
www.manaraa.com

www.manaraa.com

TOWARDS A HIGH PERFORMANCE PARALLEL LIBRARY TO COMPUTE

FLUID AND FLEXIBLE STRUCTURES INTERACTIONS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Prateek Nagar

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2015

Purdue University

Indianapolis, Indiana

www.manaraa.com

ii

“Enjoyment of life is only possible if we could get connected to the Spirit”

I humbly dedicate my work to H.H. Mataji Shri Nirmala Devi who helped millions

in achieving their self-realization through Sahaja Yoga.

www.manaraa.com

iii

ACKNOWLEDGMENTS

This work would not have been possible without continued support of my advisor

Dr. Fengguang Song, who helped me in designing and implementing the LBM-IB

software package. Also, I would thank Dr. Luoding Zhu for trusting in me to carry

out the work on his algorithm and helping me in understanding the overall algorithm

and assuring the correctness of the design. I would also like to thank Dr. Snehasis

Mukhopadhyay who accepted my request to be a part of advisory committee and

enlightening me with his valuable feedback.

I am so much blessed to have such a supportive family including my parents and

elder brother, who always showed their trust in me and helped me to overcome all

challenges by assisting me in every way possible. A special mention of my loving

nephews “Yugansh” & “Krutine” whose presence relieved me from the mental stress

and complexities of the problem and playing with them was a great source of recre-

ation.

www.manaraa.com

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABBREVIATIONS . viii

ABSTRACT . ix

1 INTRODUCTION . 1
1.1 Thesis Statement . 2
1.2 Contributions . 2
1.3 The Fluid-Structure Interaction Problem 3
1.4 Organization . 4

2 BACKGROUND . 6
2.1 Computational Fluid Dynamics . 6
2.2 LBM-IB Method . 6
2.3 LBM-IB Underlying Math . 7
2.4 OpenMP . 11
2.5 Pthread APIs . 13
2.6 Hybrid MPI/Pthread Programming 14

3 LBM-IB SERIAL VERSION . 17
3.1 Algorithm: Implementation Point of View 17

3.1.1 Initialization . 17
3.1.2 IB . 22
3.1.3 LBM . 26
3.1.4 Regeneration Functions For Next Time Step 31

3.2 Underlying Data Structure . 34
3.3 Performance Analysis . 37

4 LBM-IB SHARED MEMORY PARALLEL VERSIONS 41
4.1 OpenMP LBM-IB Version . 43
4.2 Performance Evaluation: OpenMP LBM-IB version 47
4.3 Pthread Version: Block Distribution 51
4.4 Performance Evaluation:Cube Based Block Distribution 63

5 LBM-IB HYBRID MPI/PTHREAD DISTRIBUTED MEMORY VERSION 68
5.1 Process/Machine Distribution . 68

www.manaraa.com

v

Page
5.2 MPI Extensions for LBM-IB . 71

6 RELATED WORK . 82

7 CONCLUSION . 90
7.1 Future Work . 92

LIST OF REFERENCES . 94

www.manaraa.com

vi

LIST OF TABLES

Table Page

3.1 Gprof Profiling of Serial LBM-IB on BigredII 39

3.2 Gprof Profiling of Serial LBM-IB on Dragon 40

4.1 Dragon System . 63

4.2 BigRedII . 64

4.3 Thog System . 65

4.4 Node Distance between 8 Different NUMA nodes: using “numactl −
hardware′′ . 66

5.1 Process Distribution for HybridMPI/PthreadLBM − IB 70

www.manaraa.com

vii

LIST OF FIGURES

Figure Page

3.1 Fiber-Sheet . 18

3.2 Fluid-Grid . 19

3.3 Streaming . 27

3.4 Channels of Fluid-Grid . 32

3.5 Data Structure for Immersed Boundary. 34

3.6 Data Structure for 3-D Fluid grid Serial Version. 35

3.7 Data Structure for GV Serial Version. 35

3.8 Experimental Set up . 37

4.1 Shared Memory Model . 42

4.2 OpenMP LBM-IB Performance Evaluation on BigredII. 48

4.3 OpenMP LBM-IB Performance and Parallel Efficiency on Dragon. . . . 49

4.4 Profiling Results for OpenMP LBM-IB. 50

4.5 BlockDistribution : Cube Based Pthread LBM-IB version 53

4.6 Thread Grid Mapping . 54

4.7 Modified Fluid Grid Data structure for Block Distribution 56

4.8 Datastructure Changes for Cube based Pthread LBM-IB 56

4.9 Influenced Domain of Fluid Nodes around a fiber-node 59

4.10 Streaming Boundary conditions for Cube Based LBM-IB 60

4.11 Cube Based Pthread Version Performance Evaluation 67

5.1 Lateral Distribution for MPI version 70

5.2 Global shared Data structure for MPI version 73

5.3 Streaming in Hybrid MPI/Pthread version 78

www.manaraa.com

viii

ABBREVIATIONS

3-D Three Dimensions

2-D Two Dimensions

BGK BhatnagarGrossKrook equation

CFD Computational Fluid Dynamics

DF0 Equilibrium Distribution Function g0

DF1 Equilibrium Distribution Function g for current Time step

DF2 Streamed Equilibrium Distribution Function g from DF1 to be

used in next time step

FSI Fluid-Structure Interactions

FFT Fast Fourier Transform

GV Global Variable

IB Immersed Boundary

LB Lattice Boltzmann

LBM Lattice Boltzmann Method

LV Local Variable

NS Navier-Stokes Equations

PDEs Partial Differential Equations

TLB Translation Look-Aside Buffer

www.manaraa.com

ix

ABSTRACT

Nagar, Prateek. M.S., Purdue University, May 2015. Towards a High Performance
Parallel Library to Compute Fluid and Flexible Structures Interactions. Major
Professor: Dr. Fengguang Song.

LBM-IB method is useful and popular simulation technique that is adopted ubiqui-

tously to solve Fluid-Structure interaction problems in computational fluid dynamics.

These problems are known for utilizing computing resources intensively while solving

mathematical equations involved in simulations. Problems involving such interac-

tions are omnipresent, therefore, it is eminent that a faster and accurate algorithm

exists for solving these equations, to reproduce a real-life model of such complex an-

alytical problems in a shorter time period. LBM-IB being inherently parallel, proves

to be an ideal candidate for developing a parallel software. This research focuses

on developing a parallel software library, LBM-IB based on the algorithm proposed

by [1] which is first of its kind that utilizes the high performance computing abilities

of supercomputers procurable today. An initial sequential version of LBM-IB is de-

veloped that is used as a benchmark for correctness and performance evaluation of

shared memory parallel versions. Two shared memory parallel versions of LBM-IB

have been developed using OpenMP and Pthread library respectively. The OpenMP

version is able to scale well enough, as good as 83% speedup on multicore machines

for ≤ 8 cores. Based on the profiling and instrumentation done on this version, to

improve the data-locality and increase the degree of parallelism, Pthread based data

centric version is developed which is able to outperform the OpenMP version by 53%

on manycore machines. A distributed version using the MPI interfaces on top of

the cube based Pthread version has also been designed to be used by extreme scale

distributed memory manycore systems.

www.manaraa.com

1

1 INTRODUCTION

Computational Fluid Dynamics (CFD) is an important branch of physics that pro-

vides various numerical methods for simulations of real-world problems. Its impor-

tance is further amplified by the fact that various numerical methods used in this do-

main, provide an underlying foundation for simulating critical scientific, engineering

and life-science applications. For instance, solving intricate geometry for aerodynam-

ics, numerical calculations for forecasting weather to achieve realistic visualizations,

studying the behavior of a capsule inside a human body to predict its side-effects or

benefits in areas of health science research, etc [2–4]. Fluid-Structure Interactions

(FSI) is a very active and an ongoing research area in the CFD domain. These in-

teractions are a part of daily life problems as well as used extensively in industrial,

engineering and medical science applications. The work done in this thesis is based

on solving similar interaction problems, where a flexible fiber-sheet is immersed in a

fluid boundary and the changes in the fiber-sheet in response to the changes in the

fluid properties are computed.

With high super computing abilities available today, it is highly eminent that

efficient and correct software package exists to model such cognate numerical methods

in a fast and efficient manner. It will be helpful in simulating the problems involving

FSI in a faster way and thus provide better insight to change the underlying physics

with much ease. This thesis aims at providing a parallel library to model such complex

behavior that is solved using Immersed Boundary (IB) method, which internally uses

Lattice Boltzmann Method (LBM) to model fluid solution. The work done as a part

of this thesis provides a software library called LBM-IB developed using C as base

language for all the versions of LBM-IB and the simulation experiments are carried

out on different multicore and manycore architectures (Refer tables 4.1, 4.2 & 4.3).

www.manaraa.com

2

1.1 Thesis Statement

The objective of this thesis is to design and develop a parallel shared and dis-

tributed software version of IB-LBM method proposed by [1] and to evaluate its

performance on manycore architectures. This thesis aims at developing an efficient

parallel software which utilizes the high performance computing capabilities of super-

computers procurable today. There are four basic versions of this software

• LBM-IB Serial Version : Implementation of the Algorithm proposed by [1]

• LBM-IB Parallel Shared Memory Version: OpenMP version

• LBM-IB Parallel Shared Memory Version: Block Distribution based Cubed

Pthread version

• LBM-IB Parallel Distributed Memory Version: Hybrid MPI/Pthread version

1.2 Contributions

Problems involving CFD are omnipresent, therefore, it is eminent that a faster

and accurate algorithm be used in solving these equations so that a real-life model of

any CFD problem is reproduced in a shorter time period. The main contributions of

this work are enumerated as follows:

1. This research presents the parallelizations of the numerical LBM-IB method for

the first time. Other existing parallel libraries [5–14] solves these simulations in

a different manner or in isolation of LBM and IB.

2. Two parallel shared memory versions of the serial versions are developed using

OpenMP and Pthread library interfaces. The OpenMP version of LBM-IB

scales in a very efficient manner with a speedup of as good as 83% on multicore

architectures (for ≤ 8 cores).

www.manaraa.com

3

3. In order to improve the data locality and degree of parallelism, a new data

centric Pthread parallel library of LBM-IB has been developed which exploits

the resources of manycore architecture in a better way. For large input and

higher number of cores, this version of LBM-IB is able to outrun the OpenMP

version by 53%. The same principle can be used in parallelizing other CFD

sub-problems.

4. To exploit extreme scale distributed processing capabilities available today and

further improve the level of parallelism, distributed version of LBM-IB which

uses MPI interfaces on top of the powerful Pthread libraries has been designed

for the first time.

Consequently, a new LBM-IB software has been developed with four versions. The

sequential version (1stversion) is in itself the first of its kind and the parallel versions

of OpenMP(2ndversion) and cube-based design using pthreads (3rdversion) foretells

that a parallel version of the same is very necessary to utilize the available computing

power in full extent. Also, this project embarks the Distributed Memory Version of

LBM-IB(4thversion) computation which has not been done so far.

1.3 The Fluid-Structure Interaction Problem

FSI problem can be seen as an interplay between a flexible structure inside a fluid

medium. The macroscopic property of the fluid such as the pressure, velocity etc.

are responsible for causing microscopic structural changes in the immersed structure

in the form of bending or stretching. This in turn influences the fluid boundary and

macroscopic attributes of the fluid. This again causes further structural deformation

in the structure and this process of interaction progresses with time and changes the

initial state of the computational domain (comprising the fluid and structure) [15].

In this thesis a flexible 2-D sheet is immersed in a 3-D fluid grid in order to

study interaction between the two (based on the algorithm proposed by [1]). This

arrangement of flexible structure (fiber-sheet) inside a viscous fluid medium (3-D fluid

www.manaraa.com

4

grid) is an example of FSI problem and is used in designing, development and testing

of LBM-IB software(all 4 versions). The algorithm is built to support 3-D IB method.

LBM “(D3Q19 model)” has been used as an underlying simulator for studying the

interactions between a flexible fiber-sheet submerged into a 3-D fluid structure. In

this project, the NS equations for IB are solved using LBM method unlike traditional

approaches of FFT, projection methods etc [1].The implementation differs from the

original problem stipulated in [1] on following points:

1. The flexible fiber-sheet is not tethered from the middle point.

2. The software is able to compute the location of the flexible sheet structure for

every time step, but [1] also talks about“Drag Scaling” which is not computed

but can be easily known by recording the fiber-sheets’s position at every time

interval.

3. The changes in Drag Scaling with the change in the structure’s flexibility has

not been analyzed.

1.4 Organization

This thesis is organized in the following manner. Following introduction in this

chapter, background on CFD, LBM-IB algorithm with its mathematical formalism,

basics of OpenMP, Pthread and MPI programming are described in the 2nd chapter.

Then the 3rd chapter describes the Algorithm, Data structure being used and perfor-

mance analysis of LBM-IB serial version, followed by the two shared memory parallel

versions on OpenMP and Pthread with their Experimental results in 4th chapter.

Then, the hybrid MPI/Pthread version of LBM-IB with related design changes in

the form of algorithms is described in 5th chapter. This chapter is followed by details

on the existing related work in parallelizations of LBM and IB and other parallel

algorithms in chapter 6. Then, in chapter 7th, the overall summary of the LBM-IB

www.manaraa.com

5

software, challenges in the design for each version and the scope of optimization as a

part of future work is described in brief.

www.manaraa.com

6

2 BACKGROUND

2.1 Computational Fluid Dynamics

CFD is a sub-branch of fluid mechanics that deals with fluid or gaseous flows

and their interactions with different structures that affect their properties directly or

indirectly. The basic approach lies in solving various PDEs (mostly NS equations) that

helps in identifying different attributes like pressure, viscosity etc. These equations

are used in modeling the real time simulation of any CFD problem. Traditionally and

even today, a CFD problem is sub-divided into following problem steps [16].

• Recognizing the physical boundary and the behavior of the fluid.

• Decomposing a bigger CFD domain into solvable minuscule domain. This step

requires efficient use of super-computing abilities at disposal.

• Analyzing the output which is ultimately used in developing multifarious appli-

cations.

In the past, engineers used to develop a live model of the CFD problem, which

apart from being time-consuming was also not reusable for any changes required

in the simulation or change in the design. With the advancement in the field of

computer science, the basic steps enumerated above are configured in the form of

flexible software libraries to save money, time and achieve better simulation results.

2.2 LBM-IB Method

LBM-IB has been assuring and the most commonly used approach for simulating

fluid flows and flexible structure interactions. It’s widespread use in various applica-

tions makes it an appropriate choice to develop an acceptable and functional parallel

www.manaraa.com

7

software. Immersed Boundary method is one of the most popular methods used in

CFD. It was originated by Peskin [17,18] and has revolutionized the computation of

flexible structure’s interaction with a fluid body thenceforth. The crux behind any

IB method is to obtain a solution for a “viscous in-compressible fluid” [1]. In this

project, a 2-D flexible sheet is considered to be submerged in 3-D Fluid structure.

The sheet is made up of cross-section of horizontal and vertical fibers parallel to each

other. The intrinsic fluid properties are computed using LB approach, which prefers

simulation of fluid flow from the “mesoscopic” properties such as equilibrium distribu-

tion function g(x, ε, t) , over “macroscopic” ones like pressure and velocity [1]. The

fluid flow is simulated by a 3-D regular structure made of evenly spaced fluid nodes

with a spacing of a unit between them. The fluid provides the boundary influence

to the immersed flexible sheet. Under the influence of fluid’s flow, the fiber structure

exhibits an elastic force from stretching and bending of the fibers along the width and

height of the fiber-sheet. These forces in turn affect the fluid’s properties such as the

velocity, fluid mass-density ρ, velocity distribution function g. LBM exploits “single

particle distribution function g(x, ε, t)” [1]. These helps in decomposing a bigger

domain into a smaller domain and hence make it an ideal candidate for parallelism.

The entire LBM-IB algorithm with an emphasis on LB simulations are explained in

detail in the subsequent section. The next sections describes the mathematical equa-

tions that are used in LBM-IB and the implementation of the same in the software

developed.

2.3 LBM-IB Underlying Math

BGK equation [19] forms the basis for most of the CFD problems that deal with

FSI, which is given as:

∂g(x, ε, t)

∂t
+ ε.

∂g(x, ε, t)

∂x
+ f(x, t).

∂g(x, ε, t)

∂ε
= −1

τ

(
g(x, ε, t)− g0(x, ε, t)

)
(2.1)

The right hand side of the equation describes BGK approximation which is used

as a modeling factor in LBM such as D3Q19, D3Q27, D3Q15 etc. It is known as

www.manaraa.com

8

“complex collision operator”. As the name suggests, it is used to identify the interac-

tion of the immersed structure with the fluid via “single particle velocity distribution

function” of the fluid and the force imparted by the immersed structure on the fluid

nodes annotated by f(x, t) in above equation. In simple terms, this force is the sum-

mation of the stretching and bending forces of the horizontal and vertical fibers in

the fiber-sheet which is ultimately spread to the non-moving fixed fluid nodes, which

in turns decides the location of the fiber-sheet for next time step. Also, gravitational

force can be included in this force. The “macroscopic properties” of the fluid such as

“fluid mass density ρ” and “momentum ” can be easily derived from the “mesoscopic”

g(x, ε, t), where x is the “spatial coordinate”, ε is the “particle velocity” and t is

the time [1]. The location “X” of the fiber-sheet structure at any time instant “t”

can be derived from the velocity “U” of the structure. “u”, velocity of the fixed fluid

nodes and position of the fluid nodes “x” are both used to determine the formal i.e.

the velocity “U” of the structure [1].

As described above, the success of any CFD problem lies in the way how it is

decomposed in a smaller domain. [1] stipulates a way to decompose the above problem

in a smaller domain using the D3Q19 model [20, 21]. It decomposes the aforesaid

BGK equation on a cubic fluid structure made up of evenly space fluid nodes unit

distance apart. This uniformity is also required in the distance between any two

fiber-sheet node along the width and height. There is a relation between these two

distances, if the distance between two fluid nodes is given by ∆D, then the two

fiber-sheet node should be approximately ∆D
2

. The model used by [1] has been more

effective in terms of the correctness and performance of the fluid flow simulation of

the BGK equation [22]. In this approach, the fluid node’s distribution function g(x,

ε, t) is streamed in the neighborhood of 18 different nodes, along with recording the

distribution function for itself, making a total of 19 different values for ε in a given

www.manaraa.com

9

time instant as shown in Figure 3.3 [1]. The following equation 2.2 [1] is used to

assign and stream the values of g(x, ε, t) for these directions

εi =


(0, 0, 0), i=0

(±1, 0, 0), (0,±1, 0), (0, 0,±1), i= 1,2...6

(±1,±1, 0), (±1, 0,±1), (0, 0,±1), i= 7,8...18

(2.2)

ε represents the direction along which the g(x, ε, t) is distributed. This distribu-

tion function in the next time step is derived from equation 2.3 [1].

gi(x+ εi, t+ 1) = g(x, t)− 1

τ

(
gi(x, t)− g0

i (x, t)
)
+

(
1− 1

τ

)
.wi.

(
εi − u
c2
s

+
εi.u

c4
s

.εi

)
.f

(2.3)

wi in the above equation represents the “weight ” which is given by equation 2.4 [1]

wi =


1
3
, i=0

1, i= 1,2...6

2
√

2, i= 7,8...18

(2.4)

“cs = c
2√3

is the speed of the sound used in D3Q19 model and c is the lattice speed

i.e representing the sound for the fluid structure with respect to D3Q19 ” [1]. As [1]

identifies, equations 2.5 & 2.6 are used to compute the “macroscopic properties”

such as “density ρ(x, t)” and “ρ.u” for the 3-D fluid structure. These properties

characterizes the individual discrete fluid nodes [1].

ρ(x, t) =
∑
i

gi(x, t) (2.5)

ρ.u(x, t) =
∑
i

εigi(x, t) +
f(x, t)

2
(2.6)

“Equilibrium Distribution function g0” is used in the calculation of g(x, ε, t) for

the next time steps and is given by equation 2.7 as follows [1]

g0(x, t) = ρ(x, t)wi

(
1 + 3εi.u(x, t) +

9

2

(
εi.u(x, t)

)2

− 3

2

(
u(x, t).u(x, t)

))
(2.7)

www.manaraa.com

10

For correctness in algorithm, it is important to consider the interaction at the

boundary of fluid structure and the flexible fiber-sheet. Bounce back scheme proposed

in [23] is used for the calculating the same in this algorithm. Notice that, since the

computational domain is a regular cubic structure , there are 6 faces of the fluid cube

and the boundary conditions are applied for front, rear, bottom and top surfaces to

ensure “no- slip boundary” conditions as proposed in [23].

The above equations are relevant to the LB computation. It does not describes

the intrinsic stretching and bending forces within a flexible fiber-sheet under the

influence of the fluid flow. These force calculation are the IB part of the algorithm

and the following equations illustrates it in a detailed manner [1] . Considering j=

1,2....nf fiber nodes, Stretching force Fs and Bending force Fb of fiber node j is given

by equations 2.8 & 2.9 as [1]

(Fs)j =
Ks

∆α2
1

nf−1∑
k=1

(
|Xk+1 −Xk| −∆α1

) Xk+1 −Xk

|Xk+1 −Xk|

(
δkj − δk+1,j

)
(2.8)

(Fb)j =
Kb

∆α4
1

nf−1∑
k=2

(Xk+1 +Xk−1 − 2Xk|(2δkj − δk+1,j − δk−1,j) (2.9)

Here X denotes the location of the fiber-sheet node in x,y and z dimensions, α1

represents the “Lagrangian coordinate ” and δkj is “Kronecker Symbol” given as [1]

δkj =

 1, if k = j

0, if k 6= j
(2.10)

F s and F b together constitute the elastic force and is spread on the fixed fluid

nodes, denoted by f , this force is calculated as [1]

f =
∑
α

F (α)δl(x−X(α))∆α (2.11)

f is the elastic force of the fluid node and is used in calculating the velocity u of

the fluid nodes. U , which is the velocity of the fiber-sheet nodes and is interpolated

from u in following way [1]

www.manaraa.com

11

U(α) =
∑
x

u(x)δl(x−X(α))l3 (2.12)

Point worth-noting in equation 2.12 is that given any time-step ‘t’, the position

coordinate of the fiber-sheet node X from the previous time step i.e. ‘t-1’ is used.

Dirac δl function is calculated as following which is specific to IB method being dealt

with [1]

δl(x) = l−3ψ
(x
l

)
ψ
(y
l

)
ψ
(z
l

)
(2.13)

where l is the spacing between two fluid nodes and ψ is given by [1]

ψ(z) =


1
4

(
1 + cos(Πz

2
)
)
, if |z| ≤ 2

0, otherwise

Ultimately, the location coordinates of the fiber-sheet X is calculated as [1]

“
Xn+1(α)−Xn(α)

∆t
= Un+1(α)” (2.14)

The algorithm progresses sequentially from “n” time steps and the values used in

one step serves as an input for the next time step [1]. The implementation of the

aforesaid equations with respect to software design is described in the 3rd chapter.

2.4 OpenMP

One of the shared memory versions of LBM-IB have been developed using

OpenMP. OpenMP stands for “Open MultiProcessing” [24]. It is an API specification

that supports parallelizations for C, C++ and Fortran. It is most commonly used

in developing a multi-threaded shared memory program due to its high portability

and scalability. It provides an interface for the programmers to utilize the underlying

processing capabilities of a multi-core CPU’s ranging from a simple desktop to that

of a supercomputer. There are three main components provided by OpenMP to be

used on top of the base program to make it multithreaded [24].

www.manaraa.com

12

1. “Compiler directive”: It indicates the underlying compiler to compile openmp

constructs used in the base code. It is mostly specified in the form of flags during

compilation and is language & compiler dependent. For LBM-IB, the underlying

compiler used is gcc and -fopenmp flag is used as a compiler directive.

2. “Library Routines”: The underlying implementation of spawning threads and

distributing work to them is hidden from the programmer. By linking the library

provided by OpenMP, the aforesaid behavior is guaranteed. LBM-IB includes

“omp.h” header file to accomplish this.

3. “Environment Variables”: These parameters controls the run time behavior of

the program. For instance, how many threads should be forked, what should

be the scheduling mechanism for loop iterations etc. LBM-IB makes use of

“omp set num threads” to share the work among different available re-

sources inside a processor.

OpenMP is based on “fork-join” model in which when a control reaches a prepro-

cessor directive specified in the program, a master thread spawns a number of slave

threads and distribute work to those threads. It is responsible for thread creation,

distributing work to threads and synchronizing them. The preprocessor directive

being used in LBM-IB software is“#pragma omp parallel for”.The main algo-

rithmic design for OpenMP LBM-IB version is to identify the loop iterations that can

be parallelized, to identify data dependencies in the form of public and private vari-

ables across threads and to identify implicit scoping mechanisms. Synchronization

is achieved in the form of implicit barrier provided by OpenMP library. The shared

memory version is scalable to manycore systems. The algorithm is discussed in detail

in 4.1.

www.manaraa.com

13

2.5 Pthread APIs

To effectively utilize the computing capabilities of the underlying hardware, it

is necessary to change the software design in a way that makes the maximum use

of resources at its disposal. Similar approach has been adopted my many existing

parallel software libraries [5–8,10], to name a few. This project also provides a shared

memory parallel version of LBM-IB method, in which the underlying data structure

has been transformed from the serial and OpenMP versions and then light weight

Pthread APIs are used to parallelize the simulations. Pthread can be considered as a

collection of C programming types and APIs provided by “pthread.h” library. It is

based on shared memory model as depicted in Fig 4.1. It is a low level programming

when compared with OpenMP in which the programmer needs to take care of the

thread creation and synchronizations unlike OpenMP, but as Pthread works on light

weight threads, they are most suitable for situations when optimization cannot be

traded with the programming comfort. Moreover, since both threads and the process

lie in the same shared space, the memory restrictions for a Pthread program are not

limited [25].

POSIX standards support different parallel programming model such as “Man-

ager/Worker”, “Pipeline” , “Peer ” etc [25]. The pthread version of LBM-IB is based

on “Peer” threaded model in which the underlying idea is analogous to master/slave

model, but the master thread that has created the slave threads also participates in

the work [25]. Every thread object in Pthreads is identified by a pthread prefix.

From the point of view of cube based pthread version of LBM-IB the pthread API’s

can be categorised in the following two groups [25]

1. Thread Creation: The interfaces that are responsible for creating the threads

and managing them are discussed here. For instance, initializing the thread

object via pthread t data type & managing them via pthread create and

pthread exit . The initialized threads are actually made execution worthy by

passing the type of pthread t to pthread create method which also carries

www.manaraa.com

14

information about the routine on which this initialized threads should work.

Once the execution completes, the allocated threads can be terminated via

pthread exit [25].

2. Thread Synchronization: Thread Synchronization in this context can be un-

derstood in two ways. i) To avoid data being incorrectly read or write by other

threads in action when working on a routine and ii) To stop the main thread

from exiting until the work is completed. Though, both represent the same

idea of thread synchronizations, in i) the synchronization is within the spawned

threads including the master or main thread(as it is a Peer model). whereas

in the ii) the synchronization is between the master or main thread and the

other threads that master has created. The pthread version of LBM-IB uses

pthread barrier wait , pthread mutex lock and pthread mutex unlock

for i), whereas pthread join for ii). To further elaborate on synchroniza-

tion with barrier and mutexes, each of them take objects initialized with

pthread barrier t data type for barrier pthread mutex t data type for mu-

tex. The barrier routines helps in achieving synchronization between two func-

tions within LBM-IB simulations i.e. to stop other threads from stepping into

next steps of simulation until all threads have completed, whereas the lock and

unlock feature of mutexes ensures that their is no overlapping of data writing

between threads [25].

LBM-IB uses -lpthread flag to let the compiler know that the code is going to

implement functionalities provided by pthread library. The changes in the data-

structure and thread synchronizations in context of LBM-IB are discussed in 4.3.

2.6 Hybrid MPI/Pthread Programming

High performance computing via supercomputers allows distribution of work

among different nodes. This allows a higher level of parallelization with the work

now being distributed first to different nodes residing in the supercomputer and then

www.manaraa.com

15

shared by the local resources of those nodes. This distribution of tasks and sharing

the resources thenceforth is called Hybrid Programming. [26] has shown that hybrid

programming has significant advantages over simple shared memory design in many

cases where their is less communication overhead, less data dependency or memory

utilization and high load imbalance. The underlying hardware design of such systems

varies [26] and the programmer needs to take care of various node interconnects to

make best use of the computing capabilities effectively. In Distributed computing, ev-

ery node has its own private memory or address space [27] and before computation, a

message passing mechanism is adopted to let the communicating nodes exchange data

required for computation. MPI “Message Passing Interface” provides similar inter-

faces which helps programmers to pass messages from one node to other and achieve

distribution. The main objective of MPI specification is to help programmers in build-

ing an efficient parallel message-passing program suitable for distributed computing.

MPI provides library interfaces as a binding for programs written in C and Fortran

and its supports inter-node communication by providing proper synchronizations at

the node level or in MPI terms at “COMM WORLD” level. “COMM WORLD” iden-

tifies all available nodes participating in communication. MPI assigns an individual

rank or id to each node, also referred as task or process, and makes them part of the

COMM WORLD [28]. In this thesis, an approach has been made for the first time to

provide a distributed hybrid version of LBM-IB. Unlike other hybrid approaches in

areas of distributed computing which primarily combines OpenMP with MPI, LBM-

IB has been combined with powerful pthread programming model and MPI to utilize

data locality along with powerful features of MPI interfaces.“cc” flag on BigRedII

(cray compiler) and “mpicc” flag on Dragon (Refer Tables 4.1 & 4.2 for system de-

tails) is used as a compiler directive for the program.“mpi.h” is included to provide

the underlying implementation of communication. Existing routines in the pthread

version of LBM-IB has been tailored to provide point-to point communication be-

tween communicating nodes using “MPI Send & MPI Recv”. Synchronization

www.manaraa.com

16

between the processes is done using “MPI Barrier” function provided by MPI

library. The details of the algorithm is discussed in chapter 5.

www.manaraa.com

17

3 LBM-IB SERIAL VERSION

3.1 Algorithm: Implementation Point of View

Current work involves creating a serial version of the aforesaid discretization and

simulation of flexible structure’s interaction with a 3-D fluid structure followed by

a shared memory and a distributed version. The base language for all the versions

is C. This section describes the serial version in detail in terms of different function

implemented, entire algorithm of the C program and underlying Data structure. The

software has been aptly named as LBM-IB.

3.1.1 Initialization

Before starting the LBM-IB simulations, a sequential step of initialization is per-

formed in the LBM-IB software. The software is made highly flexible, which takes

various input required for the simulation in the form of command line arguments from

the user. User specifies the fiber-sheet (including number of horizontal and vertical

fibers) dimensions, fluid grid dimensions (in terms of number of fluid-nodes in x, y and

z directions), initial location of the fiber-sheet in the fluid grid, Number of threads

(for parallel version) and number of machines/computer nodes(for Distributed ver-

sion). Following points enumerates various initialization steps of the software that

precedes the actual simulation:

1. Generation Steps for rectangular Fiber shape and 3-D regular fluid

Structure:

• Fiber-Shape structure: Based on the inputs from the user, first step is

to generate the flexible fiber-sheet structure. It is made up of paral-

lel strands of horizontal and vertical fibers (Refer Figure 3.1), the same

www.manaraa.com

18

being named(in the software) and refereed as fibers row and fibers clmn

thenceforth. In an attempt to make the software more user-friendly, many

different fiber-sheet can be used in the system to make a composite fiber-

shape. In the software, however, only one fiber-shape with a single rectan-

gular fiber-sheet is simulated. The generation is carried out by the func-

tion gen fiber shape . The input to this function are fiber-sheet’s width,

height, total number of fibers along row, total number of fibers along col-

umn and original location of the fiber-sheet in 3-D fluid world i.e. initial

position of x, y and z coordinates of the fiber-sheet. As depicted in Figure

3.1, the fiber-shape structure is granulated to a fiber-node level with each

microscopic fiber-node having a coordinate value in x, y and z directions.

Since, it is a rectangular 2-D structure, the x-coordinate value is constant

for all fiber-nodes before simulation. Memory allocation is done on heap

using malloc. Fiber-shape being generated is the outcome of this routine.

Figure 3.1. Immersed Fiber structure: with 5 parallel fiber strands along
rows and columns, enclosing 25 fiber-nodes in total.

• Fluid-Grid Generation: After generating the fiber-sheet, the viscous 3-D

fluid grid generation is done via function gen fluid grid . As above, the

input for this function are taken from the user and passed to the formal

www.manaraa.com

19

parameters defined in the function definition. The fluid-grid is granulated

to level of a fluid-node, with each fluid node having a dimensionless distri-

bution function ρ as well as the velocity vector along x, y and z directions.

User specifies the number of fluid nodes in each direction denoted by flu-

idgrid x, fluidgrid y and fluidgrid z. The software has different fluid-grid

generation routine for shared and distributed version, as the data-structure

being used are different in different versions.

Figure 3.2. 3D fluid grid with 4 surfaces in computation domain, each
surface comprising 2-D array of fluid nodes.

www.manaraa.com

20

2. Initializing GV: Next step that precedes simulation is the initialization of

various constants that are required to be assigned before simulation. This ini-

tialization is necessary to model the virtual configuration of LBM-IB method.

Shared Memory Model is being used as the basic programming model for the

parallel versions of LBM-IB and this “GV” object is used in those versions for

sharing the data across different threads or different processes. GV (Global

Variable) stores the data that is shared across all the routines and even in the

serial version some parameters being stored in GV can be reused eventually.

An object of GV denoted by ‘gv’ from now on, is used to collect the required

information by accessing a pointer to it. init gv carries out this initializa-

tion. Fibershape and fluid-grid shape are passed to this method. The basic

initialization carried out in init gv are summarized below-:

• For Fiber-sheet: As illustrated in equations 2.8 & 2.9, both stretching and

bending force of the fiber-sheet requires constants Ks and Kb respectively.

The same are calculated and assigned to gv in this method

Ks = Kshat ∗ ρ ∗ ul ∗ Ll (3.1)

Kb = Kbhat ∗ ρ ∗ ul ∗ ul ∗ L4
l (3.2)

Kshat is the “stretching compression coefficient” and is taken as “20”, ρ

is the “fluid mass density” of each fluid node, ul is the initial velocity of

the fluid and Ll is the dimensionless length which should be the smallest

among width and height of the fluid. Apart from this, the fiber-sheet nodes

are moved in the direction of the fluid velocity. For example, if the initial

location of the fiber-sheet are 20, 20.5 and 11.5 in x, y and z direction, and

if the fluid flows initially in x direction with ul = .001 then, inside init gv

the coordinates are changed to 20.001, 20.5 and 11.5. Note that this is the

origin of the fiber-sheet and if the width and height are taken as 20, the

corner-most point will be at 40.001, 40.5 and 31.5.

www.manaraa.com

21

• For Fluid-grid: One of the major discretization being done is sub-dividing

the particle velocity ‘ε’ in 19 different directions based on the equation

2.2. This is characteristic to D3Q19 model of LBM and is assigned in

this method for every 19 direction. Other than this, the inflow speed is

assigned to the fixed fluid-grid lattice in each direction which is represented

by vel x, vel y and vel z. Based on [1], the values are taken to be .001, 0.0

and 0.0 respectively. This is same as ul used in above calculations.

• Different constants such as the gravitational effect gl, sound of the model cs,

τ used in calculating Distribution function are stored in gv to be accessed

later. Also, the time of simulation denoted by TIME STOP is initialized

in this method, algorithm is repeated till the stipulated simulation steps

are completed.

• The actual computation domain of the fluid grid is surrounded by buffer

zones from top, bottom, front and rear side of the fluid grid. These buffer

zone boundaries are also evaluated and assigned in this method. This is

done to ensure that computation is correct under the buffer-zone and to

create a virtual long fluid channel [1].

3. Initializing DF0 & DF1: Equilibrium Distribution function g0 needs to be

calculated before simulation and the function init eqlbrmdistrfuncDF0 is

developed for the same purpose. It is stored as DF0 in LBM-IB software and is

calculated using equation 2.7. Based on 19 different ε values, every fluid node

is assigned a unique DF0 value. Once DF0 is assigned, every fluid node gets its

unique distribution function value for that time step which is stored as DF1 in

LBM-IB software. It is calculated using equation 2.3 and init DF1 initializes

the DF1 value before the simulation starts. During the simulations, the same

is done by compute eqlbrmdistrfuncDF1 function.

4. Initializing inlet and outlet boundaries: As depicted in Figure 3.2, the

computational domain for a fluid grid is enclosed in the inlet and outlet bound-

www.manaraa.com

22

aries. This inlet and outlet boundaries are themselves enclosed in the buffer

zones. Inlet boundary is the face of the fluid-grid facing the direction of the

inflow fluid velocity ul and outlet is the face from where the virtual fluid flow

exits. The distribution function value for each fluid node lying on these in-

let and outlet boundaries are assigned by init df inout routine, which as the

name suggests, copies the calculated DF0’s for every fluid node to the inlet and

outlet boundaries.

After Initialization, simulation is started for stipulated number of time steps. The

entire algorithm can be sub-divided into IB and LBM part. IB method involves com-

puting the elastic forces on the fiber-sheet, finding influential domain of a fiber-node

and spreading those forces to the influenced fluid node. LBM part involves computing

DF1 from the elastic forces being spread from fiber-sheet, streaming those force to

the neighboring fluid nodes, apply bounce-back scheme for front, rear, top & bottom

fluid surfaces [23], evaluate new ρ & velocities of the fluid-nodes and ultimately move

the fiber-sheet under the influence of the changed mesoscopic properties of the fluid.

As such their is no clear distinction between the IB and LBM method, as the NS

equations from IB are solved using LBM, but from the implementation point of view

the distinction is quite lucid. The IB method involves studying both the structure

and fluid properties on moving “Lagrangian” grid points and fixed “Eulerian” plane

respectively [1]. The following sections describe these methods and their implemen-

tation (in software) in detail.

3.1.2 IB

Under the influence of fluid’s initial velocity ul initialized in init gv , stretch-

ing and bending forces, collectively termed elastic forces starts developing on the

microscopic fiber-sheet nodes. Computation of stretching forces exerted by the

fiber-nodes is implemented in compute stretchingforce and bending forces in

compute bendingforce . Then, the two forces are summed up together in com-

www.manaraa.com

23

pute elasticforce which is used for spreading . These forces are characteristic at-

tribute of an individual fiber node and are stored in the data structure allocated for

Fibershape (Refer Figure 3.5). Following the calculation of forces, for every fiber-node

an influence domain of 4x4x4 fluid-nodes is calculated, which identifies the “Eulerian”

or fixed fluid-nodes. The elastic forces from the fiber-nodes are then spread to the

influenced fluid-nodes. These two-fold work of identifying the influential domain and

spreading the forces is implemented in find ifd and SpreadForce . The order of

calculating bending forces and stretching forces is not important, but once calculated,

they are summed up for every fiber-sheet node and then eventually spread. The cal-

culation is done for both horizontal and vertical parallel strands of fiber in succession.

Also, there is a separate treatment for the boundary fiber-sheet nodes while calcu-

lating the forces which will be described in detail in the following subsections. The

following sections describes the rearrangement of the mathematical equations in the

code and their use.

Calculation of Bending Forces:

Bending Force for a fiber-node is calculated from the position or the location

coordinate of the fiber-node and its neighboring fiber-nodes. To elucidate further, for

a given fiber-node, it’s bending force is dependent on it’s own location as well as the

location of its immediate two neighbors lying to its left, right, top and bottom. The

following equation simplifies the mathematics behind the equation 2.9 and illustrates

it from the implementation point of view. This simplified equation is implemented

in compute bendingforce . Here FNi indicates the location of fiber-node at ith

location and BFi denotes the Bending Force of the fiber at ith location. The sub

scripted values in terms of i denotes the location of the fibers in the neighborhood

BFi = bendingconst

(
− FNi+2 + 4 ∗ (FNi+1)− 6 ∗ (FNi) + 4 ∗ (FNi−1)

)
(3.3)

The above equation is applicable only for the fiber nodes lying in the middle of

the sheet. Kronecker symbol defined previously is used to derive the formulas for the

www.manaraa.com

24

corner most nodes, second fiber-node and pen-ultimate nodes as follows. For the first

fiber-node following formula is used.

BFi = bendingconst

(
− FNi+2 + 2 ∗ (FNi+1)− FNi

)
(3.4)

While, for the second most fiber-node the formula becomes

BFi = bendingconst

(
− FNi+2 + 4 ∗ (FNi+1)− 5 ∗ (FNi) + 2 ∗ (FNi−1)

)
(3.5)

For the penultimate fiber-node the formula becomes

BFi = bendingconst

(
2 ∗ (FNi+1)− 5 ∗ (FNi) + 4 ∗ (FNi−1)

)
(3.6)

Whereas, the following is used for the last fiber-node

BFi = bendingconst

(
− FNi + 2 ∗ (FNi−1 − FNi−2)

)
(3.7)

In all the above equations bendingconst is calculated as Kb

∆α4
1

described in the previous

chapter. Once the Bending force for a given fiber-node is calculated in one direction

vertically or horizontally, the same is summed with the other direction consequently.

Though, the fiber-sheet is 2-D, the calculation is carried out for all x, y and z directions

to know the position of the fiber in the 3-D fluid grid.

Calculation of Stretching Forces:

Stretching force for a given fiber-node is also calculated on similar lines as that

of bending forces. It is calculated based on the distance between its left, right, top

and bottom fiber-nodes. The distance between immediate fiber-node in the right is

calculated as follows

distright =
√

(FNi+1 − FNi)2
x + (FNi+1 − FNi)2

y + (FNi+1 − FNi)2
z

distleft =
√

(FNi−1 − FNi)2
x + (FNi−1 − FNi)2

y + (FNi−1 − FNi)2
z

Then, the stretching force for a fiber-node at ith location is given by

SFi = stretchconst

(
(distright−ds1)∗(FNi+1 − FNi

distright
)+(distleft−ds1)∗(FNi−1 − FNi

distleft
)
)

(3.8)

www.manaraa.com

25

The above generalization changes for the first and last point as follows. For the first

point it is given as

SFi = stretchconst

(
(distright − ds1) ∗ (

FNi+1 − FNi

distright
)
)

(3.9)

Whereas for the last point it is calculated as

SFi = stretchconst

(
(distleft − ds1) ∗ (

FNi−1 − FNi

distleft
)
)

(3.10)

The same formalization is carried out for the top and bottom neighbors and from the

implementation point of view it is calculated for the fiber-nodes along the columns.

ds1 is the distance between two adjacent fiber nodes. For our experiments, the dis-

tance are kept uniform for horizontal and vertical fibers as the width and height of the

fiber-sheet is same. streatchconst is given by Ks

ds21
. Unlike, Bending force calculation,

where it is required to take care of even the penultimate and second fiber-node as

boundary cases, here the formulation changes only for the first and the last fiber-

node. Once, the above calculation is carried out in one direction say horizontally,

the same is summed following a similar calculation in the vertical direction. So, at a

given instant a fiber-node has the force in relation to its neighbors on left, right, top

as well as bottom. compute elasticforce is a trivial function which just sums both

the bending and stretching forces calculated and stores in the form of elastic force of

a fiber-node.

Finding Influential Domain & Spreading Forces:

After completing the force calculation for a given fiber-node, its interaction with

the fluid structure starts. The first step in this interaction is to find the fixed fluid

nodes arranged on a Eulerian lattice which will be influenced for a given fiber-node.

For every fiber-node, a 4x4x4 space around that fluid node is identified and using the

floor operation 64 points are evaluated. Then, before spreading the forces directly on

www.manaraa.com

26

those 64 fluid-nodes, distance between the fluid node and fiber-node is calculated as

follows

tempdist =
1

64
∗
((

1 + cos(
π

F luidNodei0:64 − FiberNode
)
)
x,y,z

)
This tempdist is multiplied for x, y and z direction in the above equation. For every

influenced fluid node having a different distance, elastic fiber for that fluid node is

spread as follows

ElasticForceFluidnode = ElasticForceFibernode ∗ tempdist

This calculation is repeated for all the influenced fluid node (in this case 64) for a

given fiber-node. Similar to the bending and stretching forces, the elastic forces for all

the fluid-nodes are also summed together for all the fluid-nodes lying in the influenced

region.

3.1.3 LBM

Following IB simulation, once the forces are computed for all the influenced fluid

nodes, LBM starts to solve the NS equations for IB. The first step is to simulate

the mesoscopic fluid attribute, equilibrium Distribution function DF1 followed by

streaming of these values in the neighborhood. After streaming, a bounce back scheme

is applied to all the fluid nodes lying closer to the rigid surfaces which are top,

bottom, front and rear faces of the fluid-grid.The macroscopic property of the fluid:ρ

and velocities are computed and then the fiber-sheet is moved under the influence of

newly computed velocities. Following sections explains in detail about the functions

implemented to achieve the same.

Particle Collision Factor or DF1:

DF1 is the naming convention being used in the software for simple understanding.

It represents the equilibrium distribution function ‘g(x, ε, t)’ in a given time. Since,

www.manaraa.com

27

it is the first value of ‘g(x, ε, t)’ for the fluid node, it is named as DF1 and when

the same value is used for streaming it is stored as DF2 buffer. In simple terms, DF1

can be understood as computing the collision factor in the neighborhood of 19 fluid

nodes, including the fluid node itself. It is calculated using equations 2.3 and 2.7 and

in the code is implemented in compute eqlbrmdistrfuncDF1 function. This is

one of the costliest function in terms of time spent during one iteration of the entire

LBM-IB algorithm. As described in the aforesaid equations 2.3 and 2.7, DF1 value

is computed for 19 different values of particle discrete velocity ε and its associated

weight. Therefore, for a given a fluid node, it becomes a very compute intensive

routine and hence is an ideal candidate for change in the computation strategy used

currently. It can be optimized using loop unrolling.

Figure 3.3. LBM D3Q19 Model: Distribution function is streamed in 19
different directions including the node itself [1].

www.manaraa.com

28

Streaming:

This LBM portion is specific to the model being used in the computation, which is

D3Q19 in this case. As the figure 3.3 illustrates, every influenced fluid node spreads

its distribution function value computed in compute eqlbrmdistrfuncDF1 to its

neighborhood. It is nothing but a new DF1 value being stored as DF2 for the

neighboring fluid nodes. It is being termed as DF2 because the distribution func-

tion value stored as DF2 for a fluid-node in time-step ‘n’ is used in time-step ‘n+1’

for computing macroscopic properties of that fluid-node such as ‘ρ’ and ‘velocity’.

stream distrfunc implements the aforesaid functionality. It is pretty straightfor-

ward for the serial version but needs to be addressed carefully for shared versions as

the change in data structure for the former introduces new boundary cases for both

shared and distributed versions, both discussed in relevant chapters in detail.

Handling Rigid-walls:

The 3-D fluid grid arrangement of the Eulerian fluid lattice encloses the fluid-

nodes from top, bottom, front and rear. These surfaces can be considered as rigid

walls, from which the fluid nodes rebounds in the opposite direction. Worth-noting

is the fact that the fluid-grid has to be open ended from left to right to support a

viscous fluid flow in that direction. Therefore, before updating ρ and velocities from

DF1, it is necessary to evaluate the bounce back conditions for the fluid-nodes on

these surfaces to update the distribution function of the fluid-nodes on the stipulated

boundary surfaces [23]. This is implemented in bounceback rigidwalls function.

The underlying idea is to copy the DF1 value of the fluid node on the boundary value

and store it as DF2 for the opposite direction. This ensures that the fluid-nodes

on these rigid surfaces acts as if they are being bounced back and exhibit the same

‘g(x, ε, t)’ value form previous time step. For instance, for handling the boundary

conditions following switching is performed in this function.

www.manaraa.com

29

For Bottom surface:

DF2ε=3 <= DF1ε=4; DF2ε=7 <= DF1ε=8;

DF2ε=10 <= DF1ε=9; DF2ε=11 <= DF1ε=12; DF2ε=13 <= DF1ε=14;

For top surface:

DF2ε=4 <= DF1ε=3; DF2ε=8 <= DF1ε=7;

DF2ε=9 <= DF1ε=10; DF2ε=12 <= DF1ε=11; DF2ε=14 <= DF1ε=13;

For front surface:

DF2ε=6 <= DF1ε=5; DF2ε=12 <= DF1ε=11;

DF2ε=13 <= DF1ε=14; DF2ε=16 <= DF1ε=15; DF2ε=17 <= DF1ε=18;

For Rear surface:

DF2ε=5 <= DF1ε=6; DF2ε=11 <= DF1ε=12;

DF2ε=14 <= DF1ε=13; DF2ε=15 <= DF1ε=16; DF2ε=18 <= DF1ε=17;

Updating Fluid’s Macroscopic properties:

Next major steps involved in LBM simulation is to derive the fluid’s ‘fluid mass

density ρ’ and then compute the fluid-nodes velocities from ρ using equations 2.5 and

2.6 respectively. ‘ρ’ is directly derived from the summation of DF2 values streamed

from the neighbors. Then, the speed of the sound in the model is used to calculate

the velocity of fluid-node. compute rho and u routine is implemented for the same

purpose. Here ’u’ specifies the velocity of the fluid node in each direction, which is

calculated as shown in equations 3.11a & 3.11b.

www.manaraa.com

30

velx,y =

∑18
ε=0 cε ∗DF2ε + 0.5 ∗ t ∗ ElasticForcex,y

ρ
, (3.11a)

velz =

∑18
ε=0 cε ∗DF2ε + 0.5 ∗ t ∗ (ElasticForcey + gl ∗ ρ)

ρ
(3.11b)

Here ‘gl’ denotes other external forces such as gravitational forces, which are not

considered in the calculation and ‘t’ is the current time-step value.

Updating Fiber-sheet’s position

The next step in the LBM part is to move the fiber-sheet under the influence of

the fluid-nodes velocities calculated above. This is another important step in LBM

simulation as it completes the mutual interaction between fiber-node and fluid-node

or in other words, fluid & flexible structure interaction. As per the implementa-

tion, first the influential domain of a fiber-node is evaluated as done in the function

find ifd and SpreadForce , then the velocities of the fluid-nodes residing in the

influenced domain is used to update the x,y and z coordinates of that fiber-node. All

influenced fluid-nodes contribute in moving a single fiber-node. This is achieved by

summing the velocities of all the fluid-nodes in the influenced region as follows

PosX = t ∗
64∑
0

V elX ∗ (1 + cos(
Π

2
∗ rx)) ∗ (1 + cos(

Π

2
∗ ry)) ∗ (1 + cos(

Π

2
∗ rz))

(3.12)

The left hand side of the equation denotes the fiber-nodes coordinates values in

x,y and Z direction and in the right hand side, the vel attribute is the velocity of the

fluid node in those direction respectively. r x, r y and r z is the distance between

the influenced fluid-node and the fiber-node whose position is updated in x, y and

z direction. Since, there is a small influenced region of 4x4x4, the summation is

carried for all 64 influenced fluid nodes. Aforesaid functionality is implemented in

moveFiberSheet function.

www.manaraa.com

31

3.1.4 Regeneration Functions For Next Time Step

3.1.3 ends the LBM-IB computation, but in order to continue the simulation for

next time-steps following functions are implemented:

• copy buffer’s DF : As mentioned before in 3.1.1, the actual computational

domain is surrounded by buffer zones on the inlet and outlet boundaries. It is

therefore necessary to restore the buffer zone’s conditions in nth time-step to

that in (n+ 1th) time step. This is done by replacing the streamed Distribution

function value of all the fluid nodes lying on these inlet and outlet boundaries

i.e. DF2, by the distribution function value initialized in 3.1.1.

• copy DistributionFunction : As illustrated in equation 2.3, distribution

function of a fluid-node in a given time step, is derived from the distribution

function computed in previous time-step. Therefore, the streamed distribution

function DF2 of all fluid nodes are copied back to the DF1 buffer so that it can

be reused in computing distribution function for the next time step.

• PeriodicBC : As shown in fig 3.4 the 3-D fluid arrangement is supposed to be

a long cylindrical hollow tube with the computation domain for a given time

instant being a regular cube. Therefore, in order to achieve simulation for entire

cylindrical fluid grid, distribution function of fluid-nodes on the extreme inlet

and outlet boundaries are swapped with each other as shown in figure 3.4.

www.manaraa.com

32

Figure 3.4. Distribution function being swapped at the inlet and outlet
boundaries to accommodate elongated channel flow.

The entire LBM-IB simulations have been illustrated in Algorithm 1. Here, fshw,

fshh, tfr,tfc,fsx0, fsy0 and fsz0 are the fiber-sheets parameter which represents

fiber-sheet’s width, height, total fibers along horizontal direction or row, total fibers

along vertical direction or column, starting x, y and z coordinate for the fiber-sheet

respectively. Whereas, flx, fly, flz are the number of elements or fluid nodes in x, y

and z direction for fluid-grid.

www.manaraa.com

33

Algorithm 1 LBM-IB Sequential Version : Input:(fshw, fshh, tfr, tfc, flx, fly, flz,

fsx0, fsy0, fsz0)

/*Refer 3.1.1 for the following initializations*/

fiber shape = gen fiber shape(fshw,fshh, tfr, tfc, fsx0, fsy0, fsz0);

fluid grid = gen fluid grid(flx, fly, flz);

init gv; /*initialized value including fiber shape and fluid grid stored in gv object*/

init eqlbrmdistrfuncDF0(gv);

init DF1(gv);

init df inout(gv);

/*Initialization ends*/

time← 0

while time ≤= TIME STOP do . TIME STOP initialized in GV

1)compute bendingforce(gv); . /*IB Simulation starts Refer 3.1.2*/

2)compute stretchingforce(gv);

3)compute elasticforce(gv);

4)find ifd and SpreadForce(gv); . ifd:influential domain

/*IB Simulation ends*/

5)compute eqlbrmdistrfuncDF1(gv);. /*LBM simulation starts Refer 3.1.3*/

6)stream distrfunc(gv);

/*LBM Simulation ends*/

7)bounceback rigidwalls(gv);

8)compute rho and u(gv); . u refers to fluid-nodes’s velocity

9)moveF ibersheet(gv);

10)copy buffer′s DF (gv); . regeneration functions starts Refer 3.1.4

11)copy DistributionFunction(gv);

12)PeriodicBC(gv);

/*regeneration functions ends*/

end while

www.manaraa.com

34

3.2 Underlying Data Structure

This section describes in brief important data structures being used in LBM-IB

serial version.

(a) Fibershape

(b) Fibersheets inside Fibershape

(c) Strands of fibers inside a fibersheet.

(d) Microscopic Fibernode

Figure 3.5. Data Structure for Immersed Boundary.

www.manaraa.com

35

(a) Fluid Grid

(b) FluidGrid Surface and microscopic Fluid nodes.

Figure 3.6. Data Structure for 3-D Fluid grid Serial Version.

Figure 3.7. Data Structure for GV Serial Version.

www.manaraa.com

36

• Immersed Boundary or Fiber-sheet: To have flexibility in the software

reuse, immersed structure is defined as collection of fiber-sheets. Currently,

the results have been obtained for only one sheet. Every Fiber-shape has a

pointer to store sheets with each sheet identifying the microscopic fiber-node

via a pointer to fiber-node structure as shown in the figure 3.5.

• FluidGrid: As shown in fig 3.4, fluid grid represents computational domain

inside a long micro channel of fluid grids. As shown in Figure 3.2, 3-D fluid

grid is decomposed into grid surfaces along one direction (X in this case). Ev-

ery grid surface can be considered as a 2-D array of fluid nodes along the

remaining two directions. The fluid grid has three buffers for 2 dimensional

surfaces. Two of them being for inlet and outlet boundaries and the remaining

for two dimensional stack of fluid surfaces inside those boundaries pointed by

surfaces (Refer 3.6(a)). The dimensions x dim, y dim and z dim in 3.6(a) are

actually number of fluid nodes along those directions. FluidSurface structure

has access to all the fluid nodes on that surface via pointer to the structure

Fluidnode. As depicted in Fig 3.6(b) every microscopic fluid node carries the

required mesosocopic property of the fluid node used in the algorithm. The at-

tribute df inout[2][19] represents the distribution function of the fluid nodes on

inlet and outlet: where df inout[0][19] and df inout[1][19] are the buffers used

for inlet and outlet respectively.

• Global Variable GV: It represents the global data that is available to entire

LBM-IB software. As shown in figure 3.7, besides from pointers to the Fiber-

shape and Fluid grid, it stores various constants which are initialized before

simulations in init gv function. For instance, c[19][3] stores the fluid-nodes

discrete velocities given by 2.2, tau represents the “relaxation time” used in

equation 2.3 etc. As mentioned before regarding buffer-zones surrounding the

actual computational domain, these zones are identified by ib, ie, jb, je, kb,

www.manaraa.com

37

ke in x, y and z dimensions. Here ib and ie identifies beginning index and ending

index in x direction and like wise for jb-je & kb-ke for y and z dimensions.

3.3 Performance Analysis

The experiment was conducted for a 124x64x64 fluid grid in which a 20x20 fiber-

sheet is immersed as shown in Fig 3.8. The fiber-sheet comprises of 52x52 strands of

fibers parallel to each other along its width and height. Also, the initial position of

the fiber and the number of time-steps for simulations should be selected carefully.

For instance, if the fiber-sheet is placed at the extreme boundary and the experiment

is carried out for a larger time step, then the fiber-sheet will go out of the fluid-

grid and will not complete the simulation. The initial position of the fiber-sheet has

been kept at 20, 20.5 and 11.5 in x, y and z dimensions with respect to the fluid

grid coordinates. Before parallelizing the aforementioned Algorithm 1, GNU profiler

Figure 3.8. A 2-D flexible fiber-sheet of 20x20 dimension is immersed in
a 3-D viscous in-compressible fluid of 124x64x64 dimension.

gprof [29] was used to carry out a simple flat profile on the serial version and exper-

iments were conducted on BigRedII and Dragon (Refer Table 4.1 & 4.2 for System

details). Performance of the software is carried out for the LBM-IB simulations and

the regeneration steps i.e. the functions being called inside while loop as shown in

Algorithm 1. GNU profiling helps to identify the time spent by each function or

www.manaraa.com

38

kernel in a very efficient manner. It helps in identifying the bottleneck of the entire

algorithm and gives a chance to optimize those kernels.

Table 3.1 shows the profiling for sequential LBM-IB on BigredII which is Linux

machine with two AMD Opteron 16-core CPUs and 64GB of memory [30] and Table

3.2 shows the same on Dragon which is also a Linux machine but with two Intel

12-core CPUs at 2.80GHz and 50 GB of memory. The table lists the functions stated

in Algorithm 1, with the first column being their execution order of function index

specified in Algorithm 1, second column identifying the function name and the third

column denoting the percentage of total time taken by the function during the entire

simulation. As evident from the table, it can be observed that for both Dragon and

BigredII, the first four kernels take up almost 97% of the total execution time. All

these functions are related to the fluid-node computations, in which a fluid-node is

being visited in four levels of iterations: first the fluid grid surfaces along X axis

followed by the nodes lying in either direction of Y and Z axis as elucidated in Fig

3.2 and then in 18 different directions for a fluid-node corresponding the ε values as

shown in Fig 3.3.

The performance results are in tune with the input to the algorithm. As the

size of the fluid grid is much larger than that compared with the fiber-sheet the

memory consumption and the resource utilization for computations involving those

fluid-nodes takes up almost the entire memory and processing capabilities provided

by the processor. An interesting observation is that functions at positions 3rd and

4th in the Table namely stream distrfunc and copy DistributionFunction, in

which one data buffer is copied to other data buffer, with no extra computations also

contribute towards 13% of the total time. Another striking observation is that the two

different machines do not have identical kernel rankings at low level. For instance,

for AMD processor, stream distrfunc is faster than copy DistributionFunction

whereas it is just the opposite on an Intel processor. This initial profiling of the serial

code with same input on two different machines helped in analyzing the different time

bounds and restrictions involved when LBM and IB are combined together which

www.manaraa.com

39

will be very helpful in optimizing the LBM-IB approach in general and which will

eventually help in creating an efficient LBM-IB base to be used for parallelizations.

Though, the project does not aim to optimize the existing algorithm but it gives an

idea on how to effectively look out for routines taking more time and modify them as

a part of future work.

Table 3.1
Gprof Profiling of Serial LBM-IB on BigredII

Function

Index
Function Name

Percentage of

Total Time

5) compute eqlbrmdistrfuncDF1 73.21%

8) compute rho and u 12.58%

11) copy DistributionFunction 5.93%

6) stream distrfunc 5.35%

4) find ifd and SpreadForce 1.36%

9) moveFiberSheet 0.74%

12) periodicBC 0.29%

7) bounceback rigidwalls 0.22%

10) copy buffer’s DF 0.17%

1) compute bendingforce 0.03%

2) compute stretchingforce 0.02%

3) compute elasticforce 0.00%

www.manaraa.com

40

Table 3.2
Gprof Profiling of Serial LBM-IB on Dragon

Function

Index
Function Name

Percentage of

Total Time

5) compute eqlbrmdistrfuncDF1 72.48%

8) compute rho and u 10.76%

6) stream distrfunc 7.17%

11) copy DistributionFunction 5.71%

4) find ifd and SpreadForce 2.86%

10) copy buffer’s DF 0.32%

12) periodicBC 0.25%

9) moveFiberSheet 0.20%

7) bounceback rigidwalls 0.10%

1) compute bendingforce 0.03%

2) compute stretchingforce 0.02%

3) compute elasticforce 0.02%

www.manaraa.com

41

4 LBM-IB SHARED MEMORY PARALLEL VERSIONS

In an attempt to develop a parallel library for the Algorithm 1 stipulated in 3.1, two

shared memory versions of the LBM-IB method are developed. The first version is

developed using OpenMP interface which uses the same data structure as that in

the serial version, whereas, the second version is built using Pthread library with

a modified data structure and changes in LMB-IB implementation to address those

changes.

The first step in developing the shared memory versions (both OpenMP and

Pthread) was to identify suitable candidates which can be parallelized. On a broader

level, LBM-IB inherently can be parallelized on two levels, first for the fluid-grid com-

ponents or fluid nodes and the other on the fiber-sheet level or for the fiber-nodes.

As illustrated in Fig 3.2, every fluid grid is being discretized by a fluid surface which

is vertical to x axis and lying on a y-z plane. To perform simulations on an individ-

ual fluid node, first every grid surface is visited and then 2-D stack of fluid nodes is

visited in the other two dimensions using nested for loops. Similarly, the fiber-nodes

inside the fiber-sheet as shown in Fig 3.1, can be considered as a 2-D matrix, wherein

every fiber-node along row has stipulated number of fiber-nodes along columns. IB

operations of force calculation is done for all the fiber-nodes in one direction for in-

stance along row, the elastic forces computed in this direction represents partial force

for that direction only. Then these forces are added to the same fiber nodes but in

opposite direction to get the total force (stretching or bending) for a given fiber-node.

The loop iterations in all these cases are being performed using nested for loops as in

the case of fluid-nodes.

The performance analysis of the serial version reveals that the LBM part for

computing Distribution Function DF1 of a fluid node takes the maximum time. This

is due to the fact that every fluid node is being visited in a given iteration which

www.manaraa.com

42

happens to be large input of 124x64x64 fluid elements. But in a given iteration,

only few fluid nodes which lie in the periphery of 18 directions as shown in fig 3.3

are influenced. LBM-IB software intends to utilize the memory capacity of a system

and store those values in different buffers (refer Figure 3.6). This has made possible

to share the data across different resources within a node. Moreover, the initial

computation requires them to access some global data which is made available to

every thread via “gv′′ object. The same is applicable for the fiber-sheet, where the

fiber-nodes calculate the elastic forces based on the position of fiber-nodes which is

known through fiber shape instance in gv. Following OpenMP version, a cube-based

data centric version has also been developed to achieve a better performance than

OpenMP version. As elucidated in fig 4.1, the use of gv object makes it possible to

share the data across all the available resources of a system.

Figure 4.1. Every thread has an access to its private data via LV and
global data via GV.

www.manaraa.com

43

4.1 OpenMP LBM-IB Version

The programming model of OpenMP is based on “fork-join” model [24], where a

master thread is responsible for spawning stipulated amount of threads on encoun-

tering a pre-processing directive which is “pragma omp parallel” for a C binding.

After the loop ends, the master thread joins the remaining threads in a synchronized

manner [24]. OpenMP offers programmers a rich set of constructs which are useful

in designing a complete multithreaded shared memory programming software. To

elaborate, these constructs are helpful in [24]

• sharing the data among different threads,

• allocating tasks to individual threads via “Work-sharing”

• distinguishing between private and public data among threads,

• scheduling the flow of iteration for example “static”,“dynamic” or “guided”,

• synchronizing the threads after completion of tasks and

• managing run time environment variables like finding a thread id, or setting up

number of threads.

Barring “Work-Sharing”,OpenMP LBM-IB utilizes the aforesaid constructs for both

fluid and fiber-nodes. The underlying Data structure used for serial version has

been intentionally designed in a manner so that it can be used for parallelizations

for later versions of LBM-IB. OpenMP LBM-IB uses the same set of Data-structure

specified in Fig 3.5, 3.6 and 3.7. The loop iterations for both fiber-sheet and fluid-

grid are identified and then data dependencies inside those loops are analyzed to use

appropriate “data sharing attribute clauses” [24] provided by OpenMP. The changes

done in OpenMP LBM-IB from serial version are enumerated as follows:

• Input Changes: Along with the fiber-sheet’s and fluid-grid’s parameter from

the user as specified in Algorithm 1 another additional input is taken in the

www.manaraa.com

44

form of command line argument, which specifies the number of threads that

should be launched once the pragma directive is detected. This user pro-

vided number of threads is then set as run time environment variable using

“omp set num threads”. The user should selectively choose this parameter

relative to the system configuration. It would not be wise to launch more num-

ber of threads than supported by the underlying hardware configuration of the

system. For instance, on Dragon (Refer Table 4.1), which supports 12 threads

per cpu core, the maximum parallelization level that can be achieved is for 12

cores and hence the range for this parameter should lie between 2-12 for this

multicore machine.

• Fiber-Node Parallelization: It can also be called as IB parallelization,

since it deals with the immersed boundary or in other words fiber-sheet’s

computations done in serial version. The same are carried out in com-

pute bendingforce , compute stretchingforce , compute elasticforce ,

find ifd and SpreadForce and moveFibersheet . As mentioned before for

force calculation, every fiber node is visited twice along either directions. “Par-

allel Construct” “#pragma omp parallel for” is used to alert the underly-

ing system to spawn specified number of threads for this loop. The fiber-node

array(FN) in a particular row or column and it’s corresponding row (i) and col-

umn index (j) are kept private to each thread to avoid race condition. “Static”

scheduling mechanism is adopted which allows allocations of iterations to all

threads before the actual computation in the loop starts [24]. The same is

elucidated in the following algorithm in which tfc and tfr indicates the total

number of fiber elements along column and row.

www.manaraa.com

45

Algorithm 2 OpenMP LBM-IB Fiber-sheet Parallelization: Input(tfr, tfc)

/* Along fiber row*/

#pragma omp parallel for default (shared) private(FN,i,j)

for i ← 0 to tfr do

Handle special boundary conditions for fiber-nodes

for j ← 0 to tfc do FNi,j.force ← FNi,jthneighbours.force;

end for

end for

/* Along fiber column*/

#pragma omp parallel for default (shared) private(FN,i,j)

for j ← 0 to tfc do

Handle special boundary conditions for fiber-nodes

for i ← 0 to tfr do FNj,i.force ← FNj,ithneighbours.force;

end for

end for

The local pool of private data accessible to each thread is very less to those being

parallelized for find ifd and SpreadForce and moveFibersheet functions.

In these functions, apart from the fiber-node structure (FN), the influenced

region along three directions(IFD x, IFD y, IFD z), distance between the fiber-

node and all fluid nodes in the influenced region(temp dist), the corresponding

index for a specific fluid node in the influenced region (idx fluidnode) are kept

private to each thread. Thus, the pragma construct in the above algorithm

changes to #pragma omp parallel for default (shared) private(FN,

IFD x, IFD y, IFD z, temp dist, idx fluidnode)) and the calculation is

carried for an individual fiber node in both the directions together.

• Fluid-Grid Parallelization: The kernels or functions involved in these

parallelizations are compute eqlbrmdistrfuncDF1 , stream distrfunc,

www.manaraa.com

46

bounceback rigidwalls, compute rho and u , copy buffer’s DF ,

copy DistributionFunction and PeriodicBC . As discussed before, every

fluid nodes is visited by first visiting the grid surface and then the other

two dimensions. From parallelization point of view, the data sharing has to

be taken care as done above for fiber-sheet. The functions stipulated above

exhibit a similar behavior in terms of iterations and therefore, share almost

similar parallel pragma construct. If elemx, elemy and elemz represents the

number of fluid-nodes in x,y and z dimensions then the parallel construct being

used is # pragma omp parallel for default(shared) private(elemx,

elemy, elemz). It changes slightly while computing the particle collision in

compute eqlbrmdistrfuncDF1 and updating the fluid’s properties of ρ and

velocities where the thread has their own local copy of the current value of ε

representing the direction and partial sums from different directions for the two

functions respectively. The overall algorithm for this parallelization is given by

following algorithm in which elemx also represents the total number of fluid

surfaces as well as the total fluid-nodes along x direction (Refer Figure 3.2).

Algorithm 3 OpenMP LBM-IB FluidGrid Parallelization Input(elemx, elemy,

elemz)

#pragma omp parallel for default (shared) private(elemx, elemy, elemz)

for i ← 0 to elemx do

for j ← 0 to elemy do

for k ← 0 to elemz do

for ε ← 0 to 18 do

Fluid Nodeijk.[ε] ← function(Fluid Nodei,j,k.[ε]);

end for

end for

end for

end for

www.manaraa.com

47

4.2 Performance Evaluation: OpenMP LBM-IB version

BigredII, which supports high performance super-computing at Indian university

was used to evaluate the performance of OpenMP LBM-IB version. Big Red II is a

Cray XE6/XK7 supercomputer with two AMD Opteron 16-core Abu Dhabi 2.9 GHz

CPUs and memory of 64 GB. [30] (Refer Table 4.2). The experiments were conducted

for fixed input size of 124x64x64 fluid grid and 20x20 fiber-sheet made up of 52 fiber-

elements in either directions. The experiment was done for 1000 time-steps for both

serial version and OpenMP LBM-IB version. As shown in fig 4.2, the speedup is

fairly good till the number of cores are 8 but it drops as the number of cores are

increased further. A similar experiment was conducted on another Linux Machine

(Dragon) belonging to Math Department at IUPUI. It is an Intel(R) Xeon(R) CPU

model family supporting 12 cores 2.80GHz (Refer Table 4.1). The results were quite

similar as shown in fig 4.3. Here also the parallel efficiency drops as the number of

cpu cores increases.

www.manaraa.com

48

(a) OpenMP Speedup compared with ideal speedup which is equivalent to exe-

cution time of one core.

(b) Parallel Efficiency relative to ideal speedup.

Figure 4.2. OpenMP LBM-IB Performance Evaluation on BigredII.

www.manaraa.com

49

(a) OpenMP Speedup compared with ideal speedup which is equivalent to exe-

cution time of one core.

(b) Parallel Efficiency relative to ideal speedup.

Figure 4.3. OpenMP LBM-IB Performance and Parallel Efficiency on
Dragon.

In order to analyze the performance degradation relative to the cpu cores; Vampir

instrumentation [31], OpenMP profiling [32] and PAPI interface [33] were used. From

www.manaraa.com

50

vampir results it was evident that there is a load imbalance for certain functions in

which certain omp threads were waiting for other threads to finish their tasks as shown

in 4.4(a). Also, it was found that though L1 data cache miss rate is considerably low,

OpenMP LBM-IB exhibits a high L2 miss rate as shown in 4.4(b). It also shows high

load imbalance when the number of cores increases beyond 8.

(a) Vampir Instrumentation on BigredII: Depicts load imbalance for a function

in OpenMP LBM-IB.

(b) Performance Metric Data for OpenMP LBM-IB.

Figure 4.4. Profiling Results for OpenMP LBM-IB.

www.manaraa.com

51

To overcome the aforesaid limitations of the parallel version, a new modified data

centric algorithm based on Pthreads is developed. The same is discussed in the

following section.

4.3 Pthread Version: Block Distribution

OpenMP LBM-IB version has shown good results for less number of cpu cores

but as the cores are increased parallel efficiency drops considerably. From the pro-

filing and instrumentation done, it was found that OpenMP LBM-IB suffers from

load imbalance and less data locality, as many threads are idle in a given parallel

omp construct. Therefore, to better utilize the availability of idle resources, a data

centric block distribution based LBM-IB method is designed in which parallelization

is achieved by pthreads. It differs significantly from OpenMP version as now it is

required to manually distribute the threads and synchronize them to achieve correct

results in a faster way unlike OpenMP version. The most important changes for this

version is the change in treatment of the data-structure and user-defined distribu-

tion function to address those changes. It is called as Block distribution because the

threads are now being limited to a sub-portion of the fluid-grid also called “cube”,

is described in more detail in the following section. This block distribution version of

LBM-IB can also be addressed as cube based pthread LBM-IB.

Block Distribution: Cube Based Pthread version

The gnu profiling on serial LBM-IB and vampir instrumentation on

OpenMP LBM-IB revealed that the particle collision operation or the com-

pute eqlbrmdistrfuncDF1 is the most expensive kernel taking maximum time

in a given time step. This happens to be logically correct as well, since the number

of fluid-nodes are very large as compared to the immersed structure. To address the

problem statement for the LBM-IB algorithm, this is a basic requirement which makes

fluid grid sufficiently larger than the immersed structure [1]. At any instant of time,

www.manaraa.com

52

the major computation surrounds the immersed structure and the fluid-nodes lying in

its influential domain. So if we divide the fluid-grid in small cubes and allocate those

cubes to specific threads, the data-locality in a thread neighborhood will increase and

load-imbalance will be reduced. To achieve this distribution, 3D fluid grid is first

divided into 3D stack of regular sub-grids also called cubes. If the fluid-grid is made

up of elemx, elemy and elemz fluid-nodes, then the entire fluid-grid is decomposed

into elemx

k
x elemy

k
x elemz

k
cubes. ‘k’ is the dimension of the cubic sub-grid, thus, every

individual cube has k x k x k fluid nodes.“k” is a user provided parameter and is very

crucial in evaluating boundary conditions for some functions. These fluid nodes are

stored in contiguous memory block and the same is implemented in gen fluid grid

function. Along with “k”, user also specifies the number of threads to be used in

the simulation. This parameter is taken in the form of P, Q and R variable which

describes the dimensions of the thread grid (as shown in Fig 4.6) and the total num-

ber of threads such that total threads equals P x Q x R. To have a non-overlapping

distribution of threads for a given cube, a restriction is imposed on P, Q and R such

that P and elemx should be divisible by each other, likewise for Q & elemy and R &

elemz.

www.manaraa.com

53

Figure 4.5. Comparison of thread distribution in OpenMP and in Pthread
version: In cube based Pthread version threads are local to sub-fluid grid
of K x K x K dimension.

The distribution of threads to individual cube is done via cube2thread function

which returns the thread id allocated for individual cubes. Every cube is assigned an

index in three dimensions of x,y and z based on the total number of cubes and the

number of fluid elements in that direction. Let this be denoted by cidxx, cidxy and

cidxz. Then the distribution function returns the thread id given by the following

equation 4.1 as:

Threadid =
cidxx ∗ P
elemx

∗Q ∗R +
cidxy ∗Q
elemy

∗R +
cidxz ∗R
elemz

(4.1)

A similar distribution is achieved for fiber-sheet as well in which an array of fiber-

nodes for instance all fiber-nodes lying on a particular range of rows are mapped to

www.manaraa.com

54

a thread. This is implemented via function fiber2thread . For fiber-nodes lying on

ith row, thread id is calculated in following way:

Threadid =
fiberi ∗ P ∗Q ∗R
total fibersrow

(4.2)

The above distribution can be better understood from the fig 4.6 in which the fluid

grid is mapped to individual cubes via the aforesaid distribution functions to a P x

Q x R thread grid where P, Q and R are 3.

Figure 4.6. A fluid grid is mapped to individual cubes via 3x3x3 thread
grid. Every thread owns an individual cube after mapping via distribution
functions. Here P = Q = R = 3.

www.manaraa.com

55

Pthread Parallelization & Algorithm:Cube Based LBM-IB

Pthread programming model is based on the shared memory model shown in fig

4.1. Every thread has an access to the shared data besides it’s local data which is

private to the thread. [25]. Unlike OpenMP version, where the parallel construct

took care of the thread creation and synchronization, in this version Pthread APIs

are used. Threads are created using pthread create and synchronization is en-

sured via pthread join , pthread barrier wait pthread mutex lock/unlock in-

terfaces. Also, distribution function discussed in equations 4.1 and 4.2 ensures that

their is no overlapping in thread allocation. Apart from the data-structure used in

LBM-IB serial version, a new data structure (LV) for the local object specific to in-

dividual thread is defined as shown in fig 4.8 and GV also has additional attribute

to ensure thread safety and synchronization. Apart from storing thread related at-

tributes of pthread object, mutex lock (lock fluid and barrier object), gv also stores

total number of threads provided by the user, cube size representing the dimension

of the individual cubes (shown as ‘K’ in fig 4.5) and the total number of cubes in x,

y and z direction represented by num cubes x,num cubes y and num cubes z respec-

tively. The variation in GV data structure from the LBM-IB serial version are shown

in bold in Figure 4.8.

The important change to support Block Distribution is the change in the Fluidgrid

Data structure as shown in Fig 4.7. A new data structure called sub fluid grid is

created which represents the innermost cube of the fluid grid, which contains the

microscopic Fluid node unlike the serial version in which every surface had the array

of fluid-nodes. The same is accessed via a pointer in Fluid-grid. A fluid grid can be

visualized as uniform integration of these smaller sub-fluid grids or cubes.

www.manaraa.com

56

Figure 4.7. Modified Fluidgrid data structure to support block distribu-
tion.

Figure 4.8. GV and LV Data structure to accommodate Pthread con-
structs and support block distribution.

www.manaraa.com

57

A unique thread object, an attribute object, name of the function to be threaded

and arguments to that function which is threaded are passed as an argument to

pthread create interface [25]. Steps 1-12 described In Algorithm 1 are now passed

to a new function called do thread which is called from main thread as shown in

Algorithm 4. The input to this algorithm are same as that described earlier with

addition of cube dimension K, thread governing parameters P, Q and R. do thread

routine can be considered as a Thread entry function where stipulated amount of

threads start the LBM-IB simulations as shown in algorithm 5. It takes the local

thread specific object wrapped as v and starts the simulations in a parallel synchro-

nized manner.

Algorithm 4 Main Function: Input:(fshw, fshh, tfr, tfc, flx, fly, flz, fsx0, fsy0,

fsz0, K, P, Q, R)

fiber shape = gen fiber shape(fshw, fshh, tfr, tfc, fsx0, fsy0, fsz0);

fluid grid = gen fluid grid(flx, fly, flz, K);/*Cube size dimension K being passed*/

total threads ← P*Q*R;

gv← total threads, gv← lockobj;

for i ← 0 to total threads do pthread mutex init(&lockobj[i], NULL);
end for

pthread barrier init(&barrobj, NULL, total threads); gv← barrobj;

/*Do rest of the initializations as in Algorithm 1*/

pthread t *threads; . Creating a Pthread object

gv ← threads;

for i ← 0 to total threads do

lvtid ←i;

lvi ← gv;

pthread create(threads+ i, NULL,do thread, lv + i);
end for

for i ← 0 to total threads do pthread join(threads[i], void∗);
end for

pthread exit(NULL);

www.manaraa.com

58

A thread has an access to the shared global object gv and is assigned a unique

thread id as depicted in Algorithms 4 and 5. Once, a thread starts it carries out the

simulations of LBM-IB in an organized fashion. Based on the thread id returned by

the distribution functions all threads starts the fluid- flexible structure interaction

for a given time step restricted by TIME STOP. Unlike serial version, now every

routine works on a distributed set of fiber-nodes or fluid-subgrids or cubes and lv

object specific to a thread is passed to those routine. These parallelizations can be

enumerated as below:

1. IB parallelization is achieved first in which the elastic forces of fibers are com-

puted. Equation 4.2 governs the thread allocation for an array of fiber-nodes.

So, a group of threads start computing the bending and stretching forces in

compute bendingforce and compute stretchingforce routines. In both

force calculation schemes, a barrier is required between the computations of

vertical and horizontal directions for fiber-nodes, which was guaranteed by a

omp parallel for construct in OpenMP version. Then this forces are added

together in compute elasticforce which can be considered embarrassingly

parallel routine. fiber2thread distribution ensures that only a range of fiber-

nodes are distributed to a thread in a synchronized manner. Then another bar-

rier after elastic force computations ensures that all distributed threads finish

their computations before spreading the force to the fluid-nodes. While spread-

ing the forces to the influenced fluid-nodes in find ifd and SpreadForce ,

mutex objects provided by pthread library are used. The lock is required be-

cause more than two threads may try to spread the forces on same fluid-node,

since the influenced region for a fiber-node is of 4 x 4 x 4 size as shown in the

figure 4.9. Every thread has a lock to protect its cubes in influenced region. If

other threads want to access those cubes, then they will try to acquire the same

lock unique to every thread before spreading.

www.manaraa.com

59

Figure 4.9. A fiber-node is surrounded by a 4x4x4 cubic fluid grid which
forms the influential region for that fiber node.

2. After spreading the forces, every cube is visited to calculate the particle collision

or Distribution function value DF1 for fluid nodes lying in the cube implemented

in compute eqlbrmdistrfuncDF1 . The distribution via cube2thread en-

sures that the cubes belonging to intended threads are only visited. After

computing DF1, a barrier call ensures that all threads have completed their

collision calculation and are now ready to stream those values in neighborhood

of 18 fluid-nodes as shown in Fig 3.3. This is done in stream distrfunc, which

becomes little tricky to compute as the local indices within one cube which rep-

resent the actual fluid-nodes imparts a boundary for other cubes. To elaborate,

if every cube is 4 x 4 x 4 dimension, then the local indices for those cubes will

range from 0-3 in x, y and z direction. Now, for the fluid-nodes lying on the

boundary i.e at 0th and 3rd position, we need to pass appropriate values to the

neighboring cubes. For instance, if streaming is done for ε = 1, then ‘I’ index of

the cube changes to I+1 and local index value changes to the beginning index

i.e. 0 for (I + 1)th cube as shown in Figure 4.10. Similar boundary condition

checks are applied for all different directions of ‘ε’.

www.manaraa.com

60

Figure 4.10. A simple case of streaming in which the DF values are streamed
to neighboring nodes in the next cube for ‘ε′ =0.

3. Next simulation step is to ensure that the boundary fluid nodes on the rigid walls

are treated properly as in serial version of LBM-IB implemented in bounce-

back rigidwalls. In this function very few cubes lying on the periphery of

the original fluid-grid participate. The threads belonging to a specific cube dis-

tributed via cube2thread will work on copying the buffers from DF1 to DF2

as described in 3.1. Another barrier after this function ensures that now all

fluid-nodes in all the sub-fluid grids or cubes can have an updated velocity and

ρ value.

4. Then, the threads work on their local cubes assigned by cube2thread to update

the velocity and ρ values for the fluid-nodes belonging to their cubes. This is

implemented in compute rho and u . Then, before moving the fiber-sheet a

barrier is introduced to have the mesoscopic properties updated for all fluid-

nodes.

www.manaraa.com

61

5. This is the final step of fluid-structure interaction in which the fiber-nodes

extracts the updated velocities of the fluid-nodes in the influenced region. Note

that here, we do not need to lock the fluid-nodes as the threads are going to

read the data from the fluid-nodes and hence at a time a fluid-node can be

accessed by any thread. This is implemented in moveFibersheet .

6. Then the regeneration functions namely copy buffer’s DF ,

copy DistributionFunction and PeriodicBC explained in 3.1.4 en-

sures the continuity of LBM-IB simulations as for serial version. These routines

work only on the fluid nodes and hence use only cube2thread for distribution.

The entire process is outlined in Algorithm 5. Several barriers enumerated in above

steps are not shown in the algorithm for simplicity.

www.manaraa.com

62

Algorithm 5 do thread: Input:(void* v)

/*Every local thread gets access to gv and is identified by unique thread id*/

lv ← v; lvgv ← gv; tid ← lvtid;

while time ≤= TIME STOP do

for every fiberi do

if fiber2thread(fiberi)==tid then

1)compute bendingforce(lv);

2)compute stretchingforce(lv);

3)compute elasticforce(lv);

4)find ifd and SpreadForce(lv); . mutex lock used for fluid inside
end for pthread barrier wait();

for every Fluid− CubeI,J,K do

if cube2thread(Fluid− CubeI,J,K)==tid then

5)compute eqlbrmdistrfuncDF1(lv);

6)stream distrfunc(lv);
end for pthread barrier wait();

for every Fluid− CubeI,J,K do

if cube2thread(Fluid− CubeI,J,K)==tid then

7)bounceback rigidwalls(lv);
end for

pthread barrier wait();

for every Fluid− CubeI,J,K do

if cube2thread(Fluid− CubeI,J,K)==tid then

8)compute rho and u(lv);
end for pthread barrier wait();

for every fiberi do

if fiber2thread(fiberi)==tid then

9)moveF ibersheet(lv);
end for pthread barrier wait();

for every Fluid− CubeI,J,K do

if cube2thread(Fluid− CubeI,J,K)==tid then

/*Call regeneration functions */ . Refer Algorithm 1

end for pthread barrier wait();
end while

www.manaraa.com

63

4.4 Performance Evaluation:Cube Based Block Distribution

In order to evaluate the performance of the cube-based distributed algorithm, an

initial set of experiments were conducted on Dragon and BigredII (Refer Tables 4.1

and 4.2). The input for both the versions in the experiments were same and even

with a change in ‘K’ i.e the cube-size of sub-fluid grid ,both OpenMP version and

the Pthread version were comparable in performance for less number of cores. To

better analyze the performance of the new algorithm, a series of experiments were

conducted on Thog System (Refer 4.3), which is a 64 core AMD system located at

University of Tennessee, Knoxville.

Table 4.1
Dragon System

System details for Dragon: A linux machine owned by Math department at IUPUI

Parameter Description

Processor Type Intel(R) Xeon(R) X5660 2.80GHz

Number of Processors 2

Number of Cores 24

Sockets 2

L1d Cache 32 K

L1i Cache 32 K

L2 Cache 256K

L3 Cache 12288K

Number of NUMA nodes 2

Cores per NUMA node 12 x 2 each shared by a processor

OS Linux 2.6.32

Compilers gcc 64 bit 4.4.3

www.manaraa.com

64

Table 4.2
BigRedII

System details for BigRedII: A HPC supercomputer owned by Indiana University

Parameter Description

Processor Type AMD Opteron(TM) Processor 2.5GHz

Number of Processors 2

Cores per Processor 16 x 2 , shared by each processor

Number of Cores 32

Sockets 2

L1d Cache 16 K

L1i Cache 64 K

L2 Cache 2048K

L3 Cache 6144K

Number of NUMA nodes 4

Cores per NUMA node 32

OS Linux 2.6.32

Compilers gcc 64 bit 4.3.4

Thog is a manycore system supporting 16 cores distributed across four AMD

processors. As shown in Table 4.3, on every processor L2 cache is being shared by

2 cores whereas 8 cores share L3 cache. the overall memory of the entire system is

256GB. As depicted in Table 4.3, manycore system provide more NUMA nodes when

compared to other systems being used earlier (Dragon and BigRedII). NUMA stands

for “Non uniform Memory access” and system designed with high NUMA nodes tend

to utilize data locality feature of the software in a better way as the time required

to access memory locations that are shared by other NUMA nodes or local to other

NUMA nodes is more than the nodes residing in the same memory or local to a

NUMA node [34]. As shown in table 4.4, this access time can be at most 2.2 times

www.manaraa.com

65

Table 4.3
Thog System

Experimental system for Cube Based Pthread and OpenMP LBM-IB versions comparison

Parameter Description

Processor Type AMD Opetron 6380 2.5 GHz

Cores per Processor 16

L1 Cache 16 KB per core

L2 unified Cache 8 x 2 MB, each shared by two cores

L3 unified Cache 2 x 12 MB, each shared by eight cores

Number of Processors 4

Number of NUMA nodes 8

Cores per NUMA node 8

Memory per NUMA node 32 GB

OS Linux 3.9.0

Compilers gcc 64bit 4.6.3

longer than accessing the local node’s memory. This helped to correctly evaluate the

improvement in data locality offered by the new design.

Another important factor in performance improvement is the consideration of

weak scalability. The new algorithm works well if the respective cores have enough

data to compute. i.e. if we increase the number of cores and increase the input size;

which happens to be the fluid grid elements, then cube based Pthread version showed

around 53% improvement over OpenMP as shown in Figure 4.11. For every increase

in the number of cores in the experiment, the number of fluid nodes are increased

accordingly for both OpenMP and Pthread version.

The fiber-sheet elements are kept to be uniform of 104x104 for all the experiments,

but the fluid grid size is increased with the increase in cpu cores. For example if the

www.manaraa.com

66

Table 4.4
Node Distance between 8 Different NUMA nodes: using “numactl −
hardware′′

nodeid 0 1 2 3 4 5 6 7

0 10 16 16 22 16 22 16 22

1 16 10 22 16 22 16 22 16

2 16 22 10 16 16 22 16 22

3 22 16 16 10 22 16 22 16

4 16 22 16 22 10 16 16 22

5 22 16 22 16 16 10 22 16

6 16 22 16 22 16 22 10 16

7 22 16 22 16 22 16 16 10

single core took 128 x 128 x 128 fluid node, then for dual core the input was changed

to 256x128x128, which changes to 256x256x256 for eight core experiment and so on.

Figure 4.11 illustrates the relative change in execution time of the two versions

(cubed LBM-IB) and (OpenMP LBM-IB) with the change in number of cores on

Thog. As evident, for same workload, the new block Distribution based algorithm

shows an improvement over OpenMP as the number of cores increases. The execution

time for OpenMP increases more exponentially than cube based Pthread version. For

OpenMP, it increases by 25% from dual to quad core, by 36% from 4 to 8 cores , by

22% from 8 to 32 cores and from 32 to 64 cores, it increases at very high rate of 42%.

Whereas, the execution time for Pthread version increases linearly at 13% from 2 to

32 cores and for 32 to 64 cores it increases only by 18%. For 64 cores, the cube based

block distribution wins over the OpenMP version which lacks data locality feature.

As shown, cube based Pthread version is able to outrun OpenMP by 53% on 64 cores.

In an ideal case, with increase in number of cores and input, the execution time

for both versions should not vary much. But for OpenMP version the rate at which

www.manaraa.com

67

Figure 4.11. Cubed Algorithm is 53% faster than OpenMP considering
Weak scalability.

execution time increases is more than that by the cube based Pthread version. The

execution time increases with an increase in number of cores because the thread

synchronizations constricts memory bandwidth provided by hardware even though

every core works on a constant workload. Therefore, the data centric feature of

the new algorithm which makes better use of the available resources in an optimal

manner, does not over-exhaust the memory bandwidth and surpasses OpenMP for

higher number of cores.

www.manaraa.com

68

5 LBM-IB HYBRID MPI/PTHREAD DISTRIBUTED MEMORY VERSION

Hybrid Programming has become an inspirational parallel programming paradigm

for libraries developed for High performance Computing. As discussed before, many

software libraries built on Hybrid approach outperform their shared memory version

in certain situations [26]. Load Imbalance being one of them, this Hybrid version of

LBM-IB aims at eliminating earlier limitations of OpenMP and Pthread versions and

also provide for the first time a library for extreme scale distributed memory manycore

systems in areas of LBM-IB. Most of the existing hybrid approaches first distribute

the work to different nodes or a multicore system and then share the resources avail-

able on that multicore or manycore system. This hybrid version of LBM-IB is also

built on similar approach. Though not an optimal solution, this version of LBM-IB is

the first approach in combining LBM-IB together for the first time. It provides MPI

interfaces on top of the existing cube based Block distribution which uses pthread li-

brary for parallelizations in shared memory. This chapter first introduces the machine

Distribution logic, followed by the MPI code extensions and then demonstrating those

changes in the form of algorithms specific to routines involved in message passing.

Throughout this chapter node and machine are used interchangeably which identifies

different computing unit located in the same network.

5.1 Process/Machine Distribution

MPI interfaces works on a pool of processes that reside in

MPI COMM WORLD which are initialized through MPI Comm size and are

identified by rank allocated to them through MPI Comm rank. This processes

are termed as machines in rest of the thesis for simple understanding. Another input

parameter is taken from the user which tells the number of machines on which the

www.manaraa.com

69

LBM-IB simulations needs to be distributed. Hybrid MPI/Pthread LBM-IB version

distributes these processes laterally. As shown in fig 5.1, fluid grids are distributed

laterally to “N-1” machines out of “N” machines and one machine is reserved for

fiber-sheet. Current distribution logic for fluid-grid assumes distribution along ‘X’

axis, which can be changed in a user-defined function as required along ‘Y’ or ‘Z’

axis. This distribution is implemented in cube2thread andmachine function.

The underlying logic in this function is very simple and the machine ranks are

assigned as illustrated in equation 5.1. Here, CubeIndexI is the cube index along

‘X’ direction depending on the total number of cubes along that direction which

is represented as Totalcubesx in 5.1. For example, if the number of fluid-nodes

along ‘X’ axis are 128 and the dimension of the smallest cube ‘K’ based on block

distribution discussed in 4.3 is ‘4’ then the value of Totalcubesx will be 32 and

CubeIndexI will range from 0 to 31 and accordingly machine ranks will be assigned

by the equation 5.1a . Fiber machine rank is simply the rank of last machine used

in distribution as shown in fig 5.1 and illustrated in table 4.4. This distribution of

machines/processes can be considered as the first level of work distribution in the

hybrid version. Every machine will spawn local threads to carry out the simulations

in their local memory thenceforth. Apart from handling the distribution for different

nodes, cube2thread andmachine is also responsible for identifying threads local

to a specific cube residing inside that particular machine. This thread mapping is

similar to that done in cube based Pthread version of LBM-IB and the thread id is

calculated in a similar fashion as done in equation 4.1.

FluidMachinerank =
CubeIndexI ∗K
Totalcubesx

(5.1a)

FiberMachinerank = N − 1 (5.1b)

www.manaraa.com

70

Table 5.1
Process Distribution for HybridMPI/PthreadLBM − IB

Cube-Index Range Machine Rank

0-7 0

8-15 1

16-23 2

24-31 3

Fiber-Machine 4

Figure 5.1. Fluid grid and fiber-sheet resides in different machines, Fluid
grid is distributed laterally along with its block distribution to n-1 ma-
chines.

www.manaraa.com

71

5.2 MPI Extensions for LBM-IB

Initialization & LBM-IB simulation changes:

This section describes the relevant changes in cube based pthread version of

LBM-IB to address distributed computation of LBM-IB. Firstly, MPI initializa-

tion is done in the main function which involves initializing the MPI environ-

ment via MPI INIT , allocating the size of the communicator world (provided by

MPI COMM WORLD from MPI library) via MPI Comm size and allocating

the ranks to the pool of machines in the communicator via MPI Comm rank [28].

The size of communicator world is decided by the input parameter from the user (N),

taken as the number of machines participating in distribution as discussed above. The

underlying data structure used in Pthread version is used in this version as well with

a little modification for Global shared values to accommodate the aforesaid changes.

Now, every gv object also carries the information of the number of machines and

the machine rank assigned by the MPI library in num macs and my rank vari-

able respectively as shown in figure 5.2. Note that the simulation steps carried out

in do thread function as shown in Algorithm 7, are iterated for the number of

time- steps as done for cube based version in Algorithm 5. Also, there are more

MPI and Pthread barriers to accommodate data dependencies, but are not shown

for simplicity. The generation routines for the fluid-grid namely gen fluid grid is

also changed to address the distribution change depicted in fig 5.1. Now, every indi-

vidual machine allocates memory only for the fluid-nodes residing in those machine

and similarly, the fiber-machine allocates fiber related properties only in the ma-

chine reserved for it. Then, the initializations as described in 3.1.1 are carried out

for both fluid and fiber machines, following which every machine starts simulations

implemented in do thread function as for cube based Pthread version. Here, every

machines share its resources based on the number of threads provided by the user

(P*Q*R) as done in Pthread version and starts LBM-IB simulations. The distribu-

tion function fiber2thread assigns a thread id for fiber machine, whereas for the

www.manaraa.com

72

fluid machines, same functionality is carried out by cube2thread andmachine for

fluid machines(tid in Algorithms 8, 9 & 10).

Algorithm 6 Main Function:Input:(fsh w, fsh h, tf r,tf c, fl x, fl y,fl z, fs x0, fs y0,

fs z0, K, P, Q, R, num macs)

int my rank;

MPI Init(&argc,&argv);

MPI Comm size(MPI COMM WORLD,&num macs);

MPI Comm rank(MPI COMM WORLD,&my rank);

gv ← &my rank;

gv ← num macs;

fiber shape = gen fiber shape(fsh w,fsh h, tf r,tf c, fs x0, fs y0, fs z0);

fluid grid = gen fluid grid(fl x, fl y,fl z, K);/*Cube size dimension K being passed*/

total threads ← P*Q*R;

gv← total threads, gv← lockobj;

for i ← 0 to total threads do pthread mutex init(&lockobj[i], NULL);
end for

pthread barrier init(&barrobj, NULL, total threads); gv← barrobj;

/*Do rest of the initializations as in Algorithm 1*/

pthread t *threads; . Creating a Pthread object

gv ← threads;

for i ← 0 to total threads do

lvtid ←i;

lvi ← gv;

pthread create(threads+ i, NULL,do thread, lv + i);
end for

for i ← 0 to total threads do pthread join(threads[i], void∗);
end for

MPI Barrier();

MPI Finalize();

www.manaraa.com

73

Figure 5.2. Data structure changes for GV object (shown in bold).

The initializations done above can be referred as first phase of Hybrid program-

ming in which the MPI part is initialized first and then shared with resources on

individual machines via pthread create interface call. Hitherto, no inter-machine

communication takes place, which starts after segregating the fiber-machine compu-

tation from the fluid-grid. The fiber-machine is responsible to carry out elastic force

computations implemented in compute bendingforce , compute stretchingforce

and compute elasticforce without the interference from fluid-machines. Simi-

larly, fluid-machines also works independently without communicating with fiber-

machine for calculating particle collision factor or distribution function in com-

pute eqlbrmdistrfuncDF1 , update distribution function for fluid particles at

the rigid walls in bounceback rigidwalls, updating the velocity& ρ value via

compute rho and u and working on regeneration steps in copy buffer’s DF ,

copy DistributionFunction & PeriodicBC routines. For these routines, there

is no message passing and hence a simple check as shown in Algorithm 7 is sufficient.

As shown in Algorithm 6, main thread after initializing the MPI constructs and

LBM-IB initializations, allocates thread object and distributes the LBM-IB simula-

tions across total number of threads(total threads). Every thread in a process calls

www.manaraa.com

74

the entire simulation steps involving fluid-structure interactions via do thread rou-

tine(Algorithm 7).

Algorithm 7 do thread

if my rank == fibermachine then

for every fiberi do

compute bendingforce(fiberi)

compute stretchingforce(fiberi)

compute elasticforce(fiberi)
end for

pthread barrier wait(); MPI Barrier();

find ifd and SpreadForce(fiberi)

pthread barrier wait(); MPI Barrier();

for every Fluid-CubeI,J,K do

FluidMachinerank ← cube2thread andmachine(I, J,K)

if my rank == FluidMachinerank then

compute eqlbrmdistrfuncDF1(Fluid-CubeI,J,K)

stream distrfunc(Fluid-CubeI,J,K)

bounceback rigidwalls(Fluid-CubeI,J,K)

compute rho and u(Fluid-CubeI,J,K)
end for

pthread barrier wait(); MPI Barrier();

moveF iberSheet(fiberi)

for every Fluid-CubeI,J,K do

if my rank == FluidMachinerank then

/*Call regeneration fucntions as in Algorithm 1*/
end for

pthread barrier wait(); MPI Barrier();

www.manaraa.com

75

Algorithms for MPI

One of the important aspect of this version is to identify routines that will be

involved in message passing. Based on the current distribution there exists two situ-

ations in which message passing is required

1. Since, fluid and fiber machine lie on different machines, every fluid- fiber

structure interaction requires message passing. The first case is for function

find ifd and SpreadForce in which a fiber machine identifies the influenced

region of fluid nodes and spreads its elastic force on those influenced region.

Second situation is for the function moveFiberSheet , in which apart from

identifying the influenced region from a fiber-node, the velocities of the fluid-

nodes lying in the influenced region update fiber’s position. Note that the former

is one way message passing in which the fiber-machine is the sender and one

or more fluid machines are the receivers, whereas, the later is two way message

passing in which both fiber and fluid-machines acts as senders and receivers.

2. In stream distrfunc, where a fluid-node streams it’s distribution function to

its neighbors, a one way communication between different fluid-machines may

be required. In this function, as described before in 3.1.3, DF1 buffer is copied

to DF2 buffer of a fluid node lying in its vicinity, a message passing is required if

the neighborhood of the fluid-node is not in the current machine. As the current

distribution logic assigns different machine ranks laterally as shown in Fig 5.1,

some of the fluid nodes in the streamed region might lie in different machines

altogether as shown in Fig 5.3 and will need information of the distribution

function before updating their DF2 buffer.

The algorithmic changes for the aforesaid changes involving message passing are de-

scribed below:

1. find ifd and SpreadForce: Once the elastic forces of fiber-nodes are calcu-

lated in fiber-machine, they are spread to fluid-nodes residing in the influenced

www.manaraa.com

76

region for that fiber-node. Hence, this function requires one-sided communi-

cation from fiber-machine to fluid-machine. The fiber-machine acts as sender

and the fluid machines acts as receivers. Point worth noting is that there can

be more than one receivers, as the influenced region of a fiber-node can involve

fluid-nodes which may be part of more than one fluid machine. In fiber-machine

first the influenced fluid-nodes and their respective cube indices are known which

are passed to cube2thread andmachine to know the rank of the receiving

fluid machine. Then for all the fiber-nodes the information related to its in-

fluenced region and its elastic forces is packed in a buffer using MPI Pack

and sent to the intended fluid machine using MPI Send . Apart from the

relevant information, a stop flag is also sent in the buffer to let the receiver

know when to stop receiving messages. This stop flag is an indication that

all fiber-nodes in the fiber-sheet have evaluated their influential domain and

once this is completed flag is changed. Every fluid machine is sent stop signal

to stop receiving messages further to avoid deadlock. From the receivers per-

spective, the intended receivers receives the messages using MPI Recv and

unpacks the buffer using MPI Unpack . From the buffer information, the

ownermachine rank is calculated via cube2thread andmachine which identi-

fies the fluid machine in which the influenced fluid-nodes reside via its rank.

Also, the thread id (ownerthreadid) returned from this function is used to lock

and unlock the mutex where spreading of force takes place (Refer Algorithm

8). The receivers, which comprises of all the fluid machines, keep receiving the

messages in an infinite while loop and they break out of the loop depending on

the stop flag. Here, only the owner machine rank as indicated in the algorithm

carries out the actual spreading part and other machines just wait to receive

the stop signal. Then these updated forces on fluid-nodes are used to calculate

collision factor which is carried out by fluid machines alone.

www.manaraa.com

77

Algorithm 8 Find Influential Domain and spread Force to

Fluid:find ifd and SpreadForce

stopflag ←0; Fluidmachinerank; buffer . Initialize variables

if my rank == fibermachine then

for every fiberi do

if fiber2thread(fiberi)==tid then

Calculate Influential domain from fiber′is position

Find Fluid-CubeI,J,K from Influential domain

Fluidmachinerank ← cube2thread andmachine(Fluid-CubeI,J,K)

if fiberi == Lastfibernode then stopflag ←1;

for every FluidMachine do

MPI Send(stopflag)

else if stopflag == 0 then

buffer ← MPI Pack(fiber′isForce,Fluid-CubeI,J,K&stopflag)

MPI Send(buffer) . Sent to Fluidmachinerank
end for

else

while true do

MPI Recv(buffer); MPI Unpack(buffer)

FluidNode ← Fluid-CubeI,J,K

ownerthreadid ,ownermachine ← cube2thread andmachine(Fluid-CubeI,J,K)

Pthread Mutex lock(ownerthreadid) . to prevent duplicate writing

if my rank == ownermachine then

FluidNodeElasticForce calculated from fiber′isForce . Spreading forces

Pthread Mutex unlock(ownerthreadid)

if stopflag == 1 then

break;
end while

www.manaraa.com

78

2. stream distrfunc: This function streams the values of distribution function

from a fluid-node in the neighborhood of 18 neighbors as shown in fig 3.3 and

hence require message passing if the fluid-nodes that are part of this neigh-

borhood belong to different fluid machine. As for cube based Pthread version

this calculation was complex, it becomes more complex for this version, since

18 different values of ε changes the computation region and the neighbor fluid

node may belong to different machine as shown in fig 5.3. Therefore a mes-

sage is passed from the current machine identified by my rank attribute to the

intended machine using MPI interfaces. The figure does not include the bound-

ary evaluation along Y and Z axis for simplicity, but the software supports any

change in the distribution logic similarly in either directions.

Figure 5.3. Showing boundary cases requiring MPI message passing for lat-
eral distribution of machines along X axis considering three fluid machines.
Here M id1 is the sender and M id0 and M id2 are receivers.

www.manaraa.com

79

Algorithm 9 Streaming:stream distrfunc

for every Fluid-CubeI,J,K do

FluidMachinesender ← cube2thread andmachine(Fluid-CubeI,J,K);

if cube2thread andmachine(Fluid-CubeI,J,K) == tid then

Calculate local indices of cube from Fluid-CubeI,J,K

I ′, J ′, K ′ ← New positions of local indices if Streaming is applied for that ε

if Fluid-NodeI′,J ′,K′ outside ‘K’ range then

FluidMachinerecvr ← cube2thread andmachine(Fluid-CubeI′,J ′,K′);

if FluidMachinerecvr 6= FluidMachinesender then

if my rank == FluidMachinesender then

buffer ← MPI Pack(I ′, J ′, K ′,Fluid-CubeI,J,K .DF1ε);

MPI Send(buffer);

else if my rank == FluidMachinerecvr then

MPI Recv(buffer);

MPI UnPack(buffer);

/*Streaming done here if diff machine*/

Fluid-CubeI′,J ′,K′ .DF2ε ← Fluid-CubeI,J,K .DF1ε;

else/*Streaming done here for same sender and receiver machine*/

Fluid-CubeI′,J ′,K′ .DF2ε ← Fluid-CubeI,J,K .DF1ε;
end for

3. moveFiberSheet: This is the last routine which requires message passing in

either directions from fiber machine to fluid machine, and then again from fluid

machine to fiber machine. As outlined before, first the influenced region of the

fibers are known and the fluid machine is identified as in algorithm 8. The

fiber machine then sends the relevant information which is required to calculate

the velocities of the fluid nodes in a buffer. Then, in the fluid machine, based

on equations 2.5 and 2.6, partial sums are stored in buffers and sent back to

the fiber machine. These partial sums are the sum of velocities in ‘x’, ‘y’ and

‘z’ directions for the influenced fluid nodes. Fiber machine receives messages

www.manaraa.com

80

from all fluid machines and update the new position of the fiber-nodes based

on the velocity of the influenced fluid nodes. The fluid machines which are not

part of the influenced region sends ’0’ as partial sum to ensure correctness in

computation.

Algorithm 10 Updating Fiber-sheets new Position:moveFiberSheet

if my rank == fibermachine then . Fibermachine sending

for every fiberi do

if fiber2thread(fiberi)==tid then

Find the influential domain of the fiber-node described in Algorithm 8

dist ← Distance between the fiber-node and Influenced Fluid-node

buffer ← MPI Pack(Fluid-CubeI,J,K , stopflag & dist);

MPI Send(buffer);
end for

else

while true do

MPI Recv(buffer); MPI Unpack(buffer);

FluidNode ← Fluid-CubeI,J,K ;

FluidNodevel ← dist; . Updating fluid velocity

if stopflag == 1 then

break;
end while

MPI Send(FluidNodevel;) . Sending updated velocities to Fiber machine
/*Fluid machine calculation ends*/

if my rank == fibermachine then . Fibermachine receiving

MPI Recv(FluidNodevel)

for every fiberi do

if fiber2thread(fiberi)==tid then

fiber′isNewPos ← time* FluiDNodevel . time:current Time step value
end for

www.manaraa.com

81

Once the fiber sheet is moved for a given time step, then a set of regeneration functions

are called for the fluid machines in do thread routine. Hybrid MPI/Pthread LBM-IB

version presents very simplistic design of LBM-IB method which can be optimized in

many ways as a part of the future work. One of the immediate optimizations that can

be done is to store the influenced region in the fiber-sheets data structure and share

it across in both find ifd and SpreadForce and moveFiberSheet . Also, based

on the current implementation, message passing takes place for a single fiber-node

which can be greatly improved if the message buffers for influenced nodes around a

fiber-node can be regrouped and a group based message passing is performed.

www.manaraa.com

82

6 RELATED WORK

This chapter talks about different existing software libraries that solves fluid structure

interactions using LBM or IB. [1] identifies many IB methods being developed based

on Peskin’s approach [17, 18] to solve analogous CFD problems. These methods

have been tailored to match the requirements of CFD applications in question. For

instance, the “vortex-method” approach [35],“Volume-Conservation” approach [36,

37], “Adaptive-Mesh” approach [38], “Second -Order Versions” [39, 40], “Multigrid

version” [41] , “Penalty-Version” [42]. Apart from these there are other “Implicit-

versions” and “stochastic-versions” being developed [1]. As outlined, there is a history

behind IB simulations in the areas of physics and new methodologies and techniques

have evolved out of it ever since it’s inception, one of them being LB method for

solving NS equations. LBM has proven to be a powerful tool in the inventories of CFD

as it is user-friendly, simple to discretize and very flexible to accommodate additional

physics in the existing problem [20, 21, 43–50]. The hybrid LBM-IB methodology

to solve flow solutions can be considered in it’s nascent stages. The first works on

combining the two were done very latterly by Feng and Michaelides [51, 52]. In it’s

budding stages, LBM-IB was still in the two dimensional world where the solution was

provided for 2-D fluid structure. Following these developments, [1] lists various other

improvements over this approach but still in 2-D. For instance, “Modified Momentum

Exchange Method” [53] , “Multi-BLock version” [54] based on [55,56]. To summarize,

there are very few works on hybrid LBM-IB approach that deals with 3-D barring

those by [52,57,58].

The underlying idea behind the method proposed by [1] is that the calculation of

forces; the one exerted by the flexible structure on the fixed fluid nodes as well as

the boundary forces, are analyzed within LBM. This approach of IB force calculation

has been derived from [59] and is quite similar to the contributions of [57]. The

www.manaraa.com

83

hybrid LBM-IB approach proposed by [1] differs from other comparable schemes in

the following ways-:

1. The IB-LBM hybridization is applicable for flexible structures, and hence New-

ton’s Second Law for force calculation is not accountable for the motion of

particles in the fiber-sheet. “∂X
∂t

= U” is used for calculating the motion of the

particles which together constitute the submerged flexible structure. Here X is

the location of the fiber-sheet structure in 2 dimensions at any given instant of

time t and U is the velocity of the fiber-sheet. But, the force that is spread on

the fluid nodes from the fiber-sheet is calculated using Newton’s Second law “F

= ma” [1].

2. Based on [59] formalism, the way to compute foreign forces inside IB makes

it analogous to a “in-compressible viscous fluid flow” CFD problem without

any limitations. Whereas, other methods replicate the same behavior with

restrictive conditions. [1]

LBM-IB, being a relatively new simulation algorithm does not have equivalent

number of counterpart in the computer world. The parallel flavors of the two exists

in isolation. This project offers the integrated LBM-IB software to be used as an

application for the first time. However, there exists some libraries and interfaces that

have utilized the potential of IB and LBM individually. This chapter describes in

brief some of the existing parallel algorithms and software libraries that solves IB

and LBM. Also, some of the parallel algorithms that are similar to the cube based

implementation are described as state-of-the-art Parallel Algorithms.

1. IB: In the areas of IB simulations different parallel libraries and their implemen-

tation exists. The main idea behind all IB simulations is an interplay between

fixed Lagrangian fluid-nodes and Eulerian structure or fiber-nodes in motion.

The underlying technique for solving NS equations varies from one implementa-

tion to the other. The parallel implementation of IB by Givelberg and Yelick [8]

are worth notifying. They have implemented a distributed parallel version of

www.manaraa.com

84

IB method which uses 3-D FFT (Fast Fourier Transform) for solving the fluid

flow. They call their software implementation as “IB package” that is built on

Titanium programming language. Titanium is a high performance computing

language which is based on JAVA and is thus object-oriented. Their work iden-

tifies different problems that arises when implementing a parallel algorithm.

They have also identified load imbalance as a major challenge in developing

an efficient and scalable distributed software. These findings are similar to the

results being obtained from the OpenMP version of LBM-IB in this thesis. [8]

further demonstrated that an efficient selection of data structure to utilize the

computing capabilities of a processor’s cache improves the scalability of the soft-

ware. The cube based implementation of LBM-IB also is based on this principle

to alleviate the bottlenecks of load imbalance. [8] first divides the entire Fluid

grid and the fiber-structure and then distribute it to available processors. FFT

approach to solve flow simulations deals with all the fluid nodes present in the

fluid grid, but in the case of LBM, to calculate the distribution function for a

fluid node for next time step, very few fluid nodes (“18 in case of D3Q19 model

of LBM”) are visited. This makes LBM easier to parallelize than its counter-

part [1]. Also, if their is a change (in the form of modification or addition) in

the underlying physics of the problem, LBM is able to adapt to those changes

with ease when compared to FFT based simulations [1].

Another important contribution in the areas of IB is that by Griffith [5], in which

the NS equations are solved by FFT or projection methods. [5] identifies that

dividing the grid and the structure first and then distributing them together

increases the inter-processor communication for situation in which structure

and grid share boundaries with different processors. Therefore, [5] presents a

different approach in which the grid is divided and distributed first followed by

structure’s division and distribution. This process ensures less inter-processor

communication as now there is a more uniform distribution. The software

implementation of the aforesaid method uses SAMRAI [60,61] and PETSc [62]

www.manaraa.com

85

libraries to build a more scalable distributed version of IB. They call this package

as “IBAMR” [63] and it includes the entire specification details for this software.

The above related works and their results are co-related with the existing LBM-

IB software developed in this thesis. For instance, the cube-based block distri-

bution also stresses on uniform distribution of data as that done by uniform

division of the grid and structure in [5]. Similarly, as pointed out earlier [8]

gives more importance to change in the data-structure to efficiently use the

available resources, which can be visualized from the cube based Pthread ver-

sion of LBM-IB. But in both the approaches NS equations are not solved by

LBM but rather by FFT or projection methods whereas, in this project, it has

been solved entirely by LBM.

2. LBM: Computation of mesoscopic properties of the fluid under the influence of

a moving structure is the crux behind every LBM simulation. Since, LBM by

virtue of its formalization offers parallelization, many parallel algorithms exists

for LBM.

Williams et al. [9] identifies that LBM implementation in the past has shown

relatively poor scalability due to complexity in designing the data structures

and relative tight coupling between different sub kernels of LBM. They have

developed an auto tuned “LBMHD” application which can be compared with

the cube based Pthread LBM-IB version. The 2-D decomposition of the fluid

nodes in [9] is analogous to the data structure used in LBM-IB serial version.

They have created a Perl based generator which is responsible for carrying out

the LBM simulations of particle collision and streaming. After thread based

optimization, the TLB locality has been addressed as next level of optimiza-

tion in “LBMHD”, followed by relative code changes in the loop unrolling of

LBM simulations to be used by specific multicore architecture performing those

simulations. A noteworthy contribution by their work is the dynamic code op-

timization and experimentation for streaming and particle collision on different

www.manaraa.com

86

multiprocessor chips. Their implementation differs from LBM simulations done

in this project on the choice of lattice model, they have used “D3Q27”, whereas

in this project “D3Q19” model has been used. Also, the underlying physics

in their work is centered around “magnetohydrodynamics (MHD)”, whereas,

this project aims at addressing pure fluid mechanics problem of Fluid Struc-

ture interactions. Gotz et al. developed a parallel algorithm for simulation of

particle laden flows which find usage in multifarious applications such as sedi-

mentation, fluidization etc [7]. The work demonstrates parallelization of LBM

to solve NS equations for a moving rigid body which is simulated by a physical

engine, which is a software simulator that simulates the motion and attributes

of the rigid body [7]. The main contribution of their work is to optimize and

parallelize LBM fluid flow solution using a “patch” data structure and MPI in-

terfaces. The patch data structure combines both the fluid related attributes as

well as the rigid body’s attributes [7]. Their work can also be clubbed under IB

parallelization as the rigid body parallelization is also supported. Their work

differs significantly from this project as LBM-IB deals with flexible structure

and not rigid bodies.

A numerous optimization approaches and problem nature for solid-fluid inter-

action have been proposed by Valero-Lara [11]. Code optimization being done

in [11] is architecture specific such as a multicore or a GPU architecture. The

results are very promising and supports the fact that the software behaves dif-

ferently on different architectures and one of the many consideration in software

design for High Performance Computing should also include the parallelization

strength provided by the underlying hardware. This observation is well sup-

ported by the profiling variation of LBM-IB serial version on Intel and AMD

chipsets(Refer table 3.1and 3.2).

There are some other parallel libraries that focuses LBM parallelization on GPU

like accelerators, such as by Li et al. [12], implementation of pLBM library by

Peng et al [13] and 2-D LBM implementation by Tölke on CUDA kernels [14]

www.manaraa.com

87

3. state-of-the-art Parallel Algorithms: There are many different parallel al-

gorithms that solve applications other than LBM-IB and provide different solu-

tions to overcome the problems in designing a parallel software. The underlying

idea behind cube based implementation of LBM-IB is to divide the data set from

a large fluid-grid to smaller cubic sub fluid grids and hence achieve more data

locality. This decomposition of data helps in effective utilization of the memory

bandwidth available in the form of different multilevel caches, as the small work-

ing sets now make use of the idle cache memory and shows better performance

results on a manycore system.

This approach is analogous to that of a block/tile algorithm and software

blocking by [6], in which block data decomposition to improve cache perfor-

mance has been outlined. Apart from evaluating the “Translation Look-Aside

Buffer”(TLB) and cache performance of tiling with different data decomposi-

tion methods, [6] has presented an algorithm that determines the parameter

for selecting the smallest size of the block used in the block distribution in

conjunction with tiling. The ideas presented by [6] has been used in solving

matrix problems and simulations for CFD domains. The major contribution of

this work is that for larger data sets, they have considered TLB misses as well

and designed an algorithm that determines the best parameter to be used in

the block data layout along with tiling to reduce TLB as well as the cache miss

ratio. In LBM-IB library, the tuning parameter ‘K’ which is the cube size of the

smaller sub-grids, can be visualized analogously to the auto tuning parameter

described in [6].

Another noteworthy contribution in designing parallel algorithms based on tiling

is that by Dongarra et al., in which they present a classic set of tile algorithms to

solve linear algebra problems on multicore architectures [64,65]. They have pre-

sented tile based solution to parallelize “Cholesky, LU and QR factorization”,

in which the computation domain is decomposed into smaller sub domains rep-

resented in the form of “block data layout”. The algorithms presented provides

www.manaraa.com

88

a prototype for parallel software suitable for multicore architectures. [64, 65]

have outlined that improving data locality via tiling and restricting the thread

barriers in existing parallel libraries to solve linear algebra problems limits the

scalability of the software. It has been identified that to further utilize the

computing capabilities offered by multicore architectures, the existing software

libraries needs to be redesigned. As a solution to this problem, [64, 65] have

proposed dynamic scheduling of the synchronization tasks through a “graph

based model” that limits the data transfer from one local memory of a core to

another and improves performance as well as scalability of the software. Apart

from presenting the thread based parallelism of the problem, [65] also suggests

advancing the loosely coupled tasks involved in the computation to distributed

systems. This is quite similar to the LBM-IB library, in which Pthread based

shared memory version with intrinsic data dependencies and block distribution

is developed first, that can be compared with the “block data layout” proposed

in [64,65], followed by a distributed memory Hybrid MPI/Pthread LBM-IB.

On a similar formalism of designing efficient parallel software for mullticore ar-

chitectures, sparse cache blocking technique by Williams et al. which utilizes

the cache blocking for memory bound matrix vector multiplications [10] is no-

table. In their work apart from improving the low level optimization including

changes in the existing code for matrix multiplications (data structure changes)

that deals primarily with single core, optimization strategy for multicore archi-

tectures have been provided. However, unlike LBM-IB library where the entire

simulation is under one library, [10] have used Perl based generators to generate

the low level matrix multiplication routines. [10] presents an adaptable auto

tuning framework, which based on the underlying architecture of the multicore

machine, uses the best suitable kernel for that system, generated dynamically.

Similar parallelization exists for non-uniform structures as well. For instance,

the tiling algorithm demonstrated by Giles et al. [66], identifies that major

performance overhead for parallel applications is the frequent data transfers

www.manaraa.com

89

between cache and the main memory. In order to restrict these data movement,

[66] proposes intra-cache communication, in which the data is being reused

between L1 and L2 cache. They have focused their work around “Hydra: a

large scale CFD code” used in the industry to solve the flow solutions for turbo-

machinery design. Both shared memory and distributed memory designs for

Hydra has been proposed by [66] based on tiling and the same promises to have

reduction in data movement by a factor of four.

Many of the existing software libraries provide parallelizations on either LBM or IB

but not both. In this thesis, a new LBM-IB software has been developed with four

versions. The sequential version is in itself the first of its kind and the parallel versions

of OpenMP and cube-based design foretells that a parallel version of the same is very

necessary to utilize the available computing power in full extent. Also, this project

embarks the Distributed Memory Version of LBM-IB computation which has not

been done so far.

www.manaraa.com

90

7 CONCLUSION

The serial version, OpenMP version, Block Distribution based Pthread version and

MPI/Pthread based Hybrid Distributed version of LBM-IB together constitute a

powerful tool for LBM-IB based simulations. The complexities of the mathematical

calculations involved in simulating IB methods via LBM has been provided by the

serial version of LBM-IB. This version acts as a benchmark for correctness and per-

formance. Before diving into the parallelization domain, gprof profiling [29] helped

in analyzing the current state of the simulations. To elaborate, it helped in identi-

fying the rankings of the kernels based on the computation and memory costs. It

also showed that the underlying hardware of the machine (Dragon being Intel and

BigredII being AMD) also contributes in the run time behavior of the code. As shown

in the profiling tables for the two systems in 3.1 and 3.2, some of the kernels/routines

are faster in one machine than in the other.

Following serial version, a shared memory version with OpenMP and Pthread li-

brary interfaces has been developed. One of the challenges in designing the OpenMP

version was to identify the private variables for each pragma construct. This helped

in analyzing the underlying simulation process in a better way and develop a correct

OpenMP version for LBM-IB simulations. This version showed very good perfor-

mance speedup, as good as 83% for less number of cores(≤ 8). Initially all the

scheduling of threads launched by pragma omp parallel for was static and perfor-

mance was also evaluated by changing it to dynamic , but it showed no performance

improvement.

To understand the poor speedup for cores > 8 for OpenMP version, an instru-

mentation using vampir [31] tool and profiling via OpenMP profiler OmpP [32] &

PAPI [33] was done, which helped in identifying that the OpenMP version suffers

from load imbalance. As shown in Fig 4.4(a), many OMP threads wait for other

www.manaraa.com

91

threads before proceeding to the next job. This indicated that idle threads have not

been utilized completely in parallelization. Therefore, to achieve more data locality a

new data centric block distribution based shared version using light weight Pthreads

has been developed. The basic motivation behind using Pthreads was that it will re-

move the performance overhead for OpenMP threads as they internally use Pthreads.

Designing the Data structure and distribution of threads to the new data structure

was another challenge, since for this version, the creation and thread management is

entirely in the hands of the programmer. With much efforts, a new data structure

for the fluid grid was designed and the implementation was verified for correctness

against the serial version. The new data structure change added another complexity

in design for streaming in which now there were new boundary conditions between

cubes to stream the distribution function to the adjacent fluid-nodes. A lot of de-

bugging time was spent on designing a correct streaming function. Initial set of

experiments on BigredII and Dragon yielded comparable speedup between OpenMP

and Pthread version for less number of cores. Therefore, to better analyze the per-

formance of pthread version, experiments were conducted on a manycore machine

Thog supporting high NUMA depth. It was able to outperform the OpenMP version

by about 53% on manycore architecture.

Following the shared memory versions of Pthread and OpenMP, to better utilize

the computation power of supercomputers available today, a new distributed hybrid

version of LBM-IB has been designed. It is a hybrid version of MPI and Pthreads.

This version uses the same data structure as that of cube based version and provides

added distribution of node/machines over shared memory. The most challenging and

difficult part was designing the routines supporting message passing. For instance,

in finding the influential domain around a fiber-node. Also, for streaming as for the

pthread version, a new level of boundary case is introduced. First level checks the

node or machine responsible for computation and the second level checks the cubes

within those machines to be used internally by threads. Though, very basic and

www.manaraa.com

92

simplistic design, this version will be helpful in understanding the performance of

distributed LBM-IB in future.

IB method developed using LBM [1] provides a good foundation for developing a

parallel library to solve FSI problems as the shared memory version of LBM-IB shows

an impressive speedup of about 83% (for cores ≤ 8). The design and implementation

of LBM-IB has helped in understanding that in order to make best use of the avail-

able resources, the changes in software design is necessary. For example, data locality

feature provided by cube based LBM-IB scales in a much better way on manycore

machine Thog than on BigredII and Dragon. Also it was observed that the speedup

improved when the input was increased even on multicore architectures. As the num-

ber of cores are increased, to fully utilize the available resources, it is very important

to develop a data-centric algorithm for High performance computing applications to

avoid load imbalance and improve the degree of parallelism. In an ideal case, with

increase in number of cores and input, the execution time for both versions should

not vary much. But it increases with increase in number of cores, as thread syn-

chronizations constricts the memory bandwidth provided by hardware even though

every core works on the constant workload. Therefore, the data centric feature of

the new algorithm which makes better use of the available resources in an optimal

manner, does not over-exhaust the memory bandwidth and surpasses OpenMP for

higher number of cores. Though, this software packages focuses mainly on LBM-IB

simulations, the same idea can be used in designing other parallel algorithms that

relies on data-locality.

7.1 Future Work

The current library of LBM-IB has a lot of potential to be optimized. For instance,

memory optimization can be done on the usage of inlet and outlet buffers as the values

lying on this buffers are not used in computation. Also, the influential domain of the

fluid-node around a fiber-node can be stored in memory to save re-computation in

www.manaraa.com

93

a given time-step. For the Hybrid MPI/Pthread version, the distribution is very

simple with fluid-nodes and fiber-nodes on different machines. This helps in easier

implementation of the message passing interfaces, but the message passing can be

improved greatly if instead of sending the message for every fiber-node, a buffer is

stacked up for all the fiber-nodes and then a single message is sent. Also, apart

from individual function optimization as described, other optimization will include

overlapping different time step. This will require a change in the LBM-IB algorithm

but will introduce new level of concurrency between different time steps. The global

synchronizations using GV object are heavily loaded now which can be improved by

using dynamic task scheduling.

www.manaraa.com

LIST OF REFERENCES

www.manaraa.com

94

LIST OF REFERENCES

[1] Luoding Zhu, Guowei He, Shizhao Wang, Laura Miller, Xing Zhang, Qian You,
and Shiaofen Fang. An immersed boundary method based on the lattice boltz-
mann approach in three dimensions, with application. Computers & Mathematics
with Applications, 61(12):3506 – 3518, 2011. Mesoscopic Methods for Engineering
and Science Proceedings of ICMMES-09 Mesoscopic Methods for Engineering
and Science.

[2] R Steijl and G Barakos. Sliding mesh algorithm for cfd analysis of helicopter
rotor–fuselage aerodynamics. International journal for numerical methods in
fluids, 58(5):527–549, 2008.

[3] Yiannis G Perivolaris, Anna N Vougiouka, Vasilis V Alafouzos, Dimitis G
Mourikis, Vaggelis P Zagorakis, Kostas G Rados, Dimitra S Barkouta, Arthouros
Zervos, and Quin Wang. Coupling of a mesoscale atmospheric prediction system
with a cfd microclimatic model for production forecasting of wind farms in com-
plex terrain: Test case in the island of evia. In Proceedings of the European wind
energy conference, Athens, Greece, 2006.

[4] Shigang Wang, Handan Liu, and Wei Xu. Hydrodynamic modelling and cfd
simulation of ferrofluids flow in magnetic targeting drug delivery. International
Journal of Computational Fluid Dynamics, 22(10):659–667, 2008.

[5] Boyce E Griffith, Richard D Hornung, David M McQueen, and Charles S Peskin.
Parallel and adaptive simulation of cardiac fluid dynamics. Advanced computa-
tional infrastructures for parallel and distributed adaptive applications, page 105,
2010.

[6] Neungsoo Park, Bo Hong, and Viktor K Prasanna. Tiling, block data layout,
and memory hierarchy performance. Parallel and Distributed Systems, IEEE
Transactions on, 14(7):640–654, 2003.

[7] Jan Götz, Klaus Iglberger, Christian Feichtinger, Stefan Donath, and Ulrich
Rüde. Coupling multibody dynamics and computational fluid dynamics on 8192
processor cores. Parallel Computing, 36(2):142–151, 2010.

[8] Edward Givelberg and K Yelick. Distributed immersed boundary simulation in
titanium. SIAM Journal on Scientific Computing, 28(4):1361–1378, 2006.

[9] Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, and Katherine
Yelick. Lattice boltzmann simulation optimization on leading multicore plat-
forms. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE Inter-
national Symposium on, pages 1–14. IEEE, 2008.

[10] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick,
and James Demmel. Optimization of sparse matrix–vector multiplication on
emerging multicore platforms. Parallel Computing, 35(3):178–194, 2009.

www.manaraa.com

95

[11] Pedro Valero-Lara. Accelerating solid–fluid interaction based on the immersed
boundary method on multicore and gpu architectures. The Journal of Super-
computing, 70(2):799–815, 2014.

[12] Wei Li, Xiaoming Wei, and Arie Kaufman. Implementing lattice boltzmann com-
putation on graphics hardware. The Visual Computer, 19(7-8):444–456, 2003.

[13] Liu Peng, Ken-ichi Nomura, Takehiro Oyakawa, Rajiv K Kalia, Aiichiro Nakano,
and Priya Vashishta. Parallel lattice boltzmann flow simulation on emerging
multi-core platforms. In Euro-Par 2008–Parallel Processing, pages 763–777.
Springer, 2008.

[14] Jonas Tölke. Implementation of a lattice boltzmann kernel using the compute
unified device architecture developed by nvidia. Computing and Visualization in
Science, 13(1):29–39, 2010.

[15] Jong Chull Jo. Fluid-structure interactions. Korea Institute of Nuclear Safety,
Republic of Korea, 2004.

[16] http://en.wikipedia.org/wiki/computational fluid dynamics, Date Accessed:
3/2/2014.

[17] Charles S Peskin. Numerical analysis of blood flow in the heart. Journal of
Computational Physics, 25(3):220 – 252, 1977.

[18] Charles S. Peskin. The immersed boundary method. Acta Numerica, 11:479–517,
1 2002.

[19] Prabhu Lal Bhatnagar, Eugene P Gross, and Max Krook. A model for col-
lision processes in gases. i. small amplitude processes in charged and neutral
one-component systems. Physical review, 94(3):511, 1954.

[20] Yue Hong Qian. Lattice gas and lattice kinetic theory applied to the navier-
stokes equations. PhD thesisEcole Normale Superieure and University of Paris,
6, 1990.

[21] Shiyi Chen, Hudong Chen, Daniel Martnez, and William Matthaeus. Lattice
boltzmann model for simulation of magnetohydrodynamics. Physical Review
Letters, 67(27):3776, 1991.

[22] Renwei Mei, Wei Shyy, Dazhi Yu, and Li-Shi Luo. Lattice boltzmann method for
3-d flows with curved boundary. Journal of Computational Physics, 161(2):680–
699, 2000.

[23] Shiyi Chen, Daniel Martinez, and Renwei Mei. On boundary conditions in lattice
boltzmann methods. Physics of Fluids (1994-present), 8(9):2527–2536, 1996.

[24] OpenMP Specifications: http://openmp.org/, Date Accessed: 3/2/2015.

[25] Blaise Barney: Lawrence Livermore National Laboratory. POSIX Threads
Programming, https://computing.llnl.gov/tutorials/pthreads, Date Accessed:
3/2/2015.

www.manaraa.com

96

[26] Rolf Rabenseifner, Georg Hager, and Gabriele Jost. Hybrid mpi/openmp parallel
programming on clusters of multi-core smp nodes. In Parallel, Distributed and
Network-based Processing, 2009 17th Euromicro International Conference on,
pages 427–436. IEEE, 2009.

[27] Distributed Computing, http://en.wikipedia.org/wiki/distributed computing,
Date Accessed: 11/2/2014.

[28] MPI Specifications: http://www.mpi-forum.org, Date Accessed: 3/20/2015.

[29] GNU profiler: gprof, https://sourceware.org/binutils/docs/gprof, Date Ac-
cessed: 12/20/2014.

[30] BigRedII at Indiana University, https://kb.iu.edu/d/bcqt, Date Accessed:
1/20/2014.

[31] Vampir: Center for Information Services and High Performance Computing
(ZIH), https://www.vampir.eu, Date Accessed: 11/2/2014.

[32] OpenMP Profiler, http://www.ompp-tool.com, Date Accessed: 11/20/2014.

[33] PAPI Project, http://icl.cs.utk.edu/papi, Date Accessed: 11/24/2014.

[34] NUMA, http://en.wikipedia.org/wiki/non-uniform memory access, Date Ac-
cessed: 3/2/2015.

[35] M.F. McCracken and C.S. Peskin. A vortex method for blood flow through heart
valves. Journal of Computational Physics, 35(2):183 – 205, 1980.

[36] Charles S. Peskin and Beth Feller Printz. Improved volume conservation in the
computation of flows with immersed elastic boundaries. Journal of Computa-
tional Physics, 105(1):33 – 46, 1993.

[37] ME Rosar and Charles S Peskin. Fluid flow in collapsible elastic tubes: a three-
dimensional numerical model. New York J. Math, 7:281–302, 2001.

[38] Alexandre M Roma, Charles S Peskin, and Marsha J Berger. An adaptive ver-
sion of the immersed boundary method. Journal of Computational Physics,
153(2):509 – 534, 1999.

[39] Boyce E. Griffith and Charles S. Peskin. On the order of accuracy of the im-
mersed boundary method: Higher order convergence rates for sufficiently smooth
problems. Journal of Computational Physics, 208(1):75 – 105, 2005.

[40] Ming-Chih Lai and Charles S. Peskin. An immersed boundary method with
formal second-order accuracy and reduced numerical viscosity. Journal of Com-
putational Physics, 160(2):705 – 719, 2000.

[41] Luoding Zhu and Charles S. Peskin. Simulation of a flapping flexible filament in a
flowing soap film by the immersed boundary method. Journal of Computational
Physics, 179(2):452 – 468, 2002.

[42] Yongsam Kim and Charles S. Peskin. Penalty immersed boundary method for
an elastic boundary with mass. Physics of Fluids (1994-present), 19(5):–, 2007.

[43] Shuling Hou. Lattice boltzmann method for incompressible, viscous flow. 1995.

www.manaraa.com

97

[44] Xiaoyi He and Li-Shi Luo. Theory of the lattice boltzmann method: From
the boltzmann equation to the lattice boltzmann equation. Physical Review E,
56(6):6811, 1997.

[45] Xiaoyi He and Li-Shi Luo. A priori derivation of the lattice boltzmann equation.
Phys. Rev. E, 55:R6333–R6336, Jun 1997.

[46] Li-Shi Luo. Unified theory of lattice boltzmann models for nonideal gases. Phys.
Rev. Lett., 81:1618–1621, Aug 1998.

[47] Xiaoyi He, Shiyi Chen, and Raoyang Zhang. A lattice boltzmann scheme for
incompressible multiphase flow and its application in simulation of rayleigh–
taylor instability. Journal of Computational Physics, 152(2):642–663, 1999.

[48] Dieter A Wolf-Gladrow. Lattice-gas cellular automata and lattice Boltzmann
models: An Introduction. Number 1725. Springer Science & Business Media,
2000.

[49] Li-Shi Luo. Theory of the lattice boltzmann method: Lattice boltzmann models
for nonideal gases. Phys. Rev. E, 62:4982–4996, Oct 2000.

[50] Sauro Succi. The Lattice-Boltzmann Equation. Oxford university press, Oxford,
2001.

[51] Zhi-Gang Feng and Efstathios E Michaelides. The immersed boundary-lattice
boltzmann method for solving fluidparticles interaction problems. Journal of
Computational Physics, 195(2):602 – 628, 2004.

[52] Zhi-Gang Feng and Efstathios E. Michaelides. Proteus: a direct forcing method
in the simulations of particulate flows. Journal of Computational Physics,
202(1):20 – 51, 2005.

[53] X.D. Niu, C. Shu, Y.T. Chew, and Y. Peng. A momentum exchange-based im-
mersed boundary-lattice boltzmann method for simulating incompressible vis-
cous flows. Physics Letters A, 354(3):173 – 182, 2006.

[54] Yi Sui, Yong-Tian Chew, Partha Roy, and Hong-Tong Low. A hybrid immersed-
boundary and multi-block lattice boltzmann method for simulating fluid and
moving-boundaries interactions. International Journal for Numerical Methods
in Fluids, 53(11):1727–1754, 2007.

[55] Olga Filippova, Sauro Succi, Francesco Mazzocco, Cinzio Arrighetti, Gino Bella,
and Dieter Hänel. Multiscale lattice boltzmann schemes with turbulence model-
ing. Journal of Computational Physics, 170(2):812–829, 2001.

[56] Huidan Yu, Sharath S Girimaji, and Li-Shi Luo. Dns and les of decaying isotropic
turbulence with and without frame rotation using lattice boltzmann method.
Journal of Computational Physics, 209(2):599–616, 2005.

[57] Y Sui, YT Chew, P Roy, YP Cheng, and HT Low. Dynamic motion of red blood
cells in simple shear flow. Physics of Fluids (1994-present), 20(11):112106, 2008.

[58] Zhi-Gang Feng and Efstathios E Michaelides. Robust treatment of no-slip bound-
ary condition and velocity updating for the lattice-boltzmann simulation of par-
ticulate flows. Computers & Fluids, 38(2):370–381, 2009.

www.manaraa.com

98

[59] Zhaoli Guo, Chuguang Zheng, and Baochang Shi. Discrete lattice effects on the
forcing term in the lattice boltzmann method. Physical Review E, 65(4):046308,
2002.

[60] Richard D Hornung and Scott R Kohn. Managing application complexity in the
samrai object-oriented framework. Concurrency and Computation: Practice and
Experience, 14(5):347–368, 2002.

[61] Richard D Hornung, Andrew M Wissink, and Scott R Kohn. Managing complex
data and geometry in parallel structured amr applications. Engineering with
Computers, 22(3-4):181–195, 2006.

[62] Satish Balay, WD Gropp, and BF Smith. Modern software tools in scientific
computing. Efficient management of parallelism in object oriented numerical
software libraries. Birkhäuser Press, Boston, pages 163–202, 1997.

[63] IBAMR, https://github.com/ibamr/ibamr, Date Accessed: 3/2/2015.

[64] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A class
of parallel tiled linear algebra algorithms for multicore architectures. Parallel
Computing, 35(1):38–53, 2009.

[65] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. Parallel
tiled qr factorization for multicore architectures. Concurrency and Computation:
Practice and Experience, 20(13):1573–1590, 2008.

[66] Mike B Giles, Gihan R Mudalige, Carlo Bertolli, Paul HJ Kelly, E Laszlo, and
I Reguly. An analytical study of loop tiling for a large-scale unstructured mesh
application. In High Performance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion:, pages 477–482. IEEE, 2012.

	GSForm30
	LBM-IB_Thesis

